Recent press releases

Tracing evolution in Plants’ Transition to Land<br> 
A study from the group of Hirofumi Nagakami at the Max Planck Institute for Plant Breeding Research has shown how a versatile protein family may have helped plants colonize land. We sat down with Dr. Nagakami to learn more about this study and the work of his group in general. This interview has been edited for length and clarity.
  [more]
European potato genome decoded: small gene pool with large differences
Researchers from LMU and the Max Planck Institute for Plant Breeding Research have reconstructed the genomes of ten historic potato cultivars and show that they already cover 85 percent of the total variability of modern European potatoes. [more]
A New Tool for Parsing the ‘Metabolic Dialogue’ Between Microorganisms
Scientists at the Max Planck Institute for Plant Breeding Research have developed an innovative system – called MetaFlowTrain – that allows the study of metabolic exchange and interactions within microbial communities under different environmental conditions. The study is now published in Nature Communications.
  [more]
Natural Gatekeeper: How plants use barriers to maintain healthy relationships
Scientists from the Max Planck Institute for Plant Breeding Research, the University of Cologne, and the University of Copenhagen have uncovered a hidden talent of the Casparian strip—a root structure best known for acting like a plant’s security guard. It turns out this natural barrier also plays a key role in making sure legumes get the right amount of nitrogen from their bacterial partners. Their findings, now published in Science, could help researchers better understand how plants and microbes negotiate their underground business deals.
  [more]
Blocking plant immune responses gives colonizing bacteria a competitive advantage
A study led by scientists from the Max Planck Institute for Plant Breeding Research in Cologne has shown that the ability to suppress plant immune responses is shared among many of the bacteria that live on healthy plant roots. This trait stabilizes bacterial communities, known as the root microbiota, against perturbations through the plant immune system [more]
A blueprint for making cereal crops more resistant to fungal disease
Scientists have decoded the structure of a barley protein that provides resistance against a devastating fungal disease. Such structures could inform efforts to protect crops from plant pathogens.
  [more]
Exquisite control of a plant immune pathway revealed
In a new study published in Nature, researchers working in the groups of Jijie Chai (Westlake University in Hangzhou, China) and Jane Parker (MPIPZ in Cologne, Germany) describe how Arabidopsis plants exert fine-control of a major immune signalling machinery rapid but restricted host cell death after pathogen recognition. [more]
Octoploid genome decoded

Octoploid genome decoded

January 17, 2025
MPIPZ research groups collaborate to produce a fully phased, chromosome-scale genome assembly of Cardamine chenopodiifolia [more]
An unusual suspect is responsible for susceptibility of barley to devastating fungal disease
A collaboration between US and German researchers has revealed the surprising identity of a plant factor responsible for susceptibility to fungal disease in the USA’s top barley-growing region. Their study is published in the journal New Phytologist.
  [more]
Hybrid crops with all the traits of their parents
Researchers of the MPIPZ have developed a technique that enables the breeding of genetically identical hybrid plants [more]
Buried treasure: a plant that makes flowers and fruits underground
Researchers describe the unusual trait of amphicarpy, where two types of fruit develop on the same plant: one above- and the other below-ground. [more]
Changes in the shape of the shoot apex are synchronized with floral transition in Arabidopsis
As plants initiate flowering, the shoot tip enlarges and undergoes genetic reprogramming. However, how these changes in shoot-tip shape are co-regulated with the floral transition is unknown. In a new study published in Nature Communications, researchers from the group of George Coupland at the Max-Planck Institute for Plant Breeding Research in Cologne, Germany, show that the reciprocal repression of two genes at the plant apex synchronises changes in meristem shape with the floral transition in the model plant Arabidopsis thaliana.
  [more]
Switching leaf shapes

Switching leaf shapes

June 24, 2024
Researchers discover a genetic switch in plants that can turn simple spoon-shaped leaves into complex leaves with leaflets [more]
Finding the balance in the plant immune response
Publication in Nature describes novel regulatory mechanism that keeps plant immune responses in check. [more]
Salty soil sensitizes plants to an unconventional mode of bacterial toxicity
A collaborative study between researchers from the Max Planck Institute for Plant Breeding Research and the Fraunhofer Institute for Molecular Biology and Applied Ecology has shown how a single metabolite can render bacteria toxic to plants under high salt conditions. Their findings may have important implications for agriculture and plant health in changing climates.
  [more]
Mitosis instead of Meiosis
Researchers breed tomato plants that contain the complete genetic material of both parent plants [more]
Capturing the full spectrum of genetic diversity
A research team led by Raphaël Mercier and Korbinian Schneeberger from the Max Planck Institute for Plant Breeding Research in Cologne investigated the great genome diversity of the most popular research model plant Arabidopsis thaliana. A valuable toolbox to empower future genetic research. The study is now published in Nature Genetics.
  [more]
Track and trace members of the plant microbiome with DNA barcodes
A research team led by Paul Schulze-Lefert developed a modular toolkit for tracking bacterial strains colonising plant tissue in competition with other microbiome members. The study is now published in Nature Microbiology.

  [more]
Researchers solve mystery of how minimalist plant immune molecules become activated<br> 
A new study published in the journal Nature shows that the same phenomenon that occurs when we try to mix oil and water – phase separation – plays an important role in the immune system of plants.
  [more]
How a common weed builds up explosive force<br /> 
Hairy bittercress has explosive fruit that fire seeds in all directions. MPI researchers discover how these seed pods power their own explosion. [more]
New insights in the regulation of genetic information exchange
A study, led by André Marques, identified chromosome pairing as key in the control for the distribution of genetic material. The findings will provide further insights towards new approaches in plant breeding. [more]
Timing leaf growth<br /> 

Timing leaf growth
 

February 07, 2024
Leaf heteroblasty is the fascinating natural phenomenon by which plants produce different leaves as they grow and mature. This requires a complex interplay between cellular growth and time, and allows a single plant to manifest a diverse range of leaf shapes and sizes over its lifespan. In a recent paper in the journal Current Biology, scientists from the Max Planck Institute for Plant Breeding Research in Cologne have now shed light on how this intricate process occurs during leaf development of the small mustard plant Arabidopsis thaliana. By studying the development of juvenile and adult leaves, they identified key differences in their cellular growth patterns, which they found were controlled by a SPL9-CYCD3 transcriptional module. These findings provide us with a deeper understanding of how the passing of time is encoded into organ growth and morphogenesis, and demonstrate the intricate tempo of plant growth and development. [more]
A bacterial toolkit for colonizing plants<br /> 
Using a novel experimental approach, Max Planck researchers have discovered a core set of genes required by commensal bacteria to colonize their plant hosts. The findings may have broad relevance for understanding how bacteria establish successful host–commensal relationships.
  [more]
Unravelling the basis of the dual role of TFL1 in reproductive development
Reproductive development in plants involves a transition from the vegetative phase during which leaves are continuously produced at the shoot apex, to the reproductive phase marked by the production of inflorescence branches and flowers. Scientists at the Max-Planck Institute for Plant Breeding Research in Cologne have used morphological characterization coupled with protein expression patterns and gene expression profiling to investigate how a regulatory protein called TERMINAL FLOWER 1 carries out two distinct functions at the shoot apex during flowering in the model species Arabidopsis thaliana.
  [more]
Immune defense as key for plants conquering land<br /> 
A new study, led by Hirofumi Nakagami at the Max Planck Institute for Plant Breeding Research in Cologne, Germany, demonstrates that one of the two branches of plant immunity was likely to have evolved early during the establishment of plants on dry land. This insight into prehistoric plant immunity may have implications for breeding more resistant plant species.
  [more]
Structural insights illuminate the arms race between crop plants and fungal pathogens<br /> 
Scientists from the Max Planck Institute for Plant Breeding Research shed light on how harmful fungi evade recognition by their plant hosts and aid infection.
  [more]
A guide through the genome
Plants show enormous variety in traits relevant to breeding, such as plant height, yield and resistance to pests. One of the greatest challenges in modern plant research is to identify the differences in genetic information that are responsible for this variation. A research team led by the "Crop Yield" working group at the Institute for Molecular Physiology at Heinrich Heine University Düsseldorf (HHU) and at Max Planck Institute for Plant Breeding Research in Cologne (MPIPZ), together with the Carnegie Institution of Science at Stanford, has now developed a method to identify precisely these special differences in genetic information. Using the example of maize, they demonstrate the great potential of their method in the journal Genome Biology and present regions in the maize genome that may help to increase yields and resistance to pests during breeding. [more]
Keeping competitors away drives colonization success in the plant microbiota
Scientists from the Max Planck Institute for Plant Breeding Research, in Cologne, in collaboration with an international team of researchers, have identified natural chemical strategies that bacteria use to keep competitors at bay and successfully proliferate on plants. The study is now published in the journal PNAS.
  [more]
Scientists provide evidence for new theory of genetic recombination<br /> 
New findings from researchers at the Max Planck Institute for Plant Breeding Research in Cologne, Germany, suggest an explanation for the century-old mystery of how chromosome recombination is regulated during sexual reproduction. Their findings are published in the journal Nature Communications.
  [more]
Structure of wheat immune protein resolved – important tool in the battle for food security
Scientists from the Max Planck Institute for Plant Breeding Research and the University of Cologne in Germany together with colleagues from China have unravelled how wheat protects itself from a deadly pathogen. Their findings, published in the journal Nature, could be harnessed to make important crop species more resistant to disease. [more]
Resolving target-gene specificity via protein–protein interactions<br /> 
A fundamental topic in plant development is how proteins function together in regulatory networks to coregulate the activity of specific target genes. A collaboration between researchers in the groups of George Coupland and Jijie Chai from the Max-Planck Institute for Plant Breeding Research and the University of Cologne has elucidated an elegant mechanism for how a particular protein–protein interaction cooperatively targets genes in Arabidopsis by affecting DNA conformation. The findings, published in Nature Plants, has wider implications for how transcription factors can achieve regulatory specificity in other developmental contexts.
  [more]
Speeding up evolution at genome-level by alternative chromosome configuration<br /> 
A research team led by André Marques at the Max Planck Institute for Plant Breeding Research in Cologne, Germany, has uncovered the profound effects of an atypical mode of chromosome arrangement on genome organization and evolution. Their findings are published in the journal Cell. [more]
Molecules boosting plant immunity identified<br /> 
Two studies published in the journal Science by researchers at the Max Planck Institute for Plant Breeding Research in Cologne, Germany in collaboration with colleagues in China have discovered natural cellular molecules that drive critical plant immune responses. These compounds have all the hallmarks of being small messengers tailored by plants to turn on key defense-control hubs. Harnessing these insights may allow scientists and plant breeders to design molecules that make plants, including many important crop species, more resistant to disease. [more]
A stiff polymer called lignin (stained red) is deposited in a precise pattern in the cell walls of exploding seed pods. Researchers identified three laccase enzymes required to form this lignin. No lignin forms in the cell wall when all three genes are knocked out by CRISPR/Cas9 gene editing
Researchers identify the genes controlling the mechanical structure of exploding seed pods [more]
A two-step adaptive walk in the wild<br /> 
New research in plants that colonized the base of an active stratovolcano reveals that two simple molecular steps rewired nutrient transport, enabling adaptation.
  [more]
Roots stiffen up to stop growth
The plant hormone cytokinin inhibits root cell growth [more]
barley floret
The study, published in Current Biology, shows a direct link of auxin to pollen fertility. [more]
An island model - uncovering adaption
Wild populations of the model plant Arabidopsis thaliana from the Cape Verde Islands reveal the mechanisms of adaptation after abrupt environmental change.
  [more]
Potato genome decoded

Potato genome decoded

March 03, 2022
The complete sequencing of the genetic material facilitates the breeding of new varieties [more]
Show more
Go to Editor View