Department of Comparative Development and Genetics
Welcome to the homepage of our department that started its activities in 2013 with the relocation of the Director Miltos Tsiantis from the University of Oxford. We seek to address two fundamental questions in biology: how do biological forms develop and what is the basis for their diversity? To address these questions we first aim to elucidate how genotypes are translated into organismal forms through the process of morphogenesis. Secondly, we seek to conceptualize how the balance of conservation versus divergence in morphogenetic regulatory networks yields different organismal forms during evolution. We approach these problems using genetics, while also employing biological imaging, genomics and computational modelling. We believe that working at the interface of these areas will allow us to attain a predictive understanding of how biological forms develop and diversify.
Our research programme is empowered by the use of Cardamine hirsuta (Hairy bittercress), a common weed we developed as a model system for studies in evolution of development. C. hirsuta is related to the reference plant Arabidopsis thaliana (Thale cress) and, like A. thaliana, is amenable to both forward and reverse genetics approaches, including efficient transgenesis. However, C. hirsuta and A. thaliana differ in key morphological traits, including leaf shape, shoot branching, floral structure and fruit development, so comparative studies between these two species can greatly enrich our knowledge of the molecular mechanisms driving evolution of form. The analysis of both induced and natural variation within this comparative framework, coupled with broader phylogenetically informed studies across seed plants, will help us to understand the genetic basis for evolutionary change.
Selected Publications
Li X-M, Jenke H, Strauss S, Wang Y, Bhatia N, Kierzkowski D, Lymbouridou R, Huijser P, Smith RS, Runions A, Tsiantis M (2024): Age-associated growth control modifies leaf symmetry and enabled leaf shape diversification. Current Biology, 34: 4547-4558, DOI: 10.1016/j.cub.2024.07.068
Hu Z*, Wilson-Sánchez D*, Bhatia N, Rast-Somssich MI, Wu A, Vlad D, McGuire L, Nikolov LA, Laufs P, Gan X, Laurent S, Runions A, Tsiantis M (2024): A CUC1/auxin genetic module links cell polarity to patterned tissue growth and leaf shape diversity in crucifer plants. PNAS, 121: e2321877121, DOI: 10.1073/pnas.2321877121
Mosca G*, Eng RC*, Adibi M, Yoshida S, Lane B, Bergheim L, Weber G, Smith RS, Hay A (2024): Growth and tension in explosive fruit. Current Biology 34: 010-1022.e4, DOI: 10.1016/j.cub.2024.01.059
Bhatia N, Wilson-Sánchez D, Strauss S, Vuolo F, Pieper B, Hu Z, Rambaud-Lavigne L, Tsiantis M (2023): Interspersed expression of CUP-SHAPED COTYLEDON2 and REDUCED COMPLEXITY shapes Cardamine hirsuta complex leaf form, Current Biology, 33: 2977–2987, DOI: 10.1016/j.cub.2023.06.037
Baumgarten L*, Pieper B*, Song B, Mane S, Lempe J, Lamb L, Cooke EL, Srivastava R, Strütt S, Žanko D, Casimiro GP, Hallab A, Cartolano M, Tattersall AD, Huettel B, Filatov DA, Pavlidis P, Neuffer B, Bazakos C, Schaefer H, Mott R, Gan X, Alonso-Blanco C, Laurent S, Tsiantis M (2023): Pan-European study of genotypes and phenotypes in the Arabidopsis relative Cardamine hirsuta reveals how adaptation, demography and development shape diversity patterns. PloS Biology, 21:e3002191, DOI: 10.1371/journal.pbio.3002191
Wang Y, Strauss S, Liu S, Pieper B, Lymbouridou R, Runions A, Tsiantis M (2022): The cellular basis for synergy between RCO and KNOX1 homeobox genes in leaf shape diversity. Current Biology, 32: 3773-3784, DOI: 10.1016/j.cub.2022.08.020
Pérez-Antón M, Schneider I, Kroll P, Hofhuis H, Metzger S, Pauly M, Hay A (2022): Explosive seed dispersal depends on SPL7 to ensure sufficient copper for localized lignin deposition via laccases. PNAS, 119: e2202287119. DOI: 10.1073/pnas.2202287119
Kierzkowski D*, Runions A*, Vuolo F, Strauss S, Lymbouridou R, Routier-Kierzkowska A-L, Wilson-Sánchez D, Jenke H, Galinha C, Mosca G, Zhang Z, Canales C, Dello Ioio R, Huijser P, Smith RS, Tsiantis M (2019): A Growth-Based Framework for Leaf Shape Development and Diversity. Cell, 177: 1405-1418, DOI: 10.1016/j.cell.2019.05.011
Hofhuis H*, Moulton D*, Lessinnes T*, Routier-Kierzkowska AL*, Bomphrey RJ*, Mosca G, Reinhardt H, Sarchet P, Gan X, Tsiantis M, Ventikos Y, Walker S, Goriely A, Smith R, Hay A (2016): Morphomechanical Innovation Drives Explosive Seed Dispersal. Cell, 166: 222-233, DOI: 10.1016/j.cell.2016.05.002
Vlad D, Kierzkowski D, Rast MI, Vuolo F, Dello Ioio R, Galinha C, Gan X, Hajheidari M, Hay A, Smith RS, Huijser P, Bailey CD, Tsiantis M (2014): Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science, 343: 780-3, DOI: 10.1126/science.1248384
* contributed equally.