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 A B S T R A C T

During neurodevelopment, neuronal axons navigate through the extracellular environment, 
guided by various cues to establish connections with distant target cells. Among other factors, 
axon trajectories are influenced by heterogeneities in environmental stiffness, a process known 
as durotaxis, the guidance by substrate stiffness gradients. Here, we develop a three-scale model 
for axonal durotaxis. At the molecular scale, we characterise the mechanical interaction between 
the axonal growth cone cytoskeleton, based on molecular-clutch-type interactions dependent on 
substrate stiffness. At the growth cone scale, we spatially integrate this relationship to obtain 
a model for the traction generated by the entire growth cone. Finally, at the cell scale, we 
model the axon as a morphoelastic filament growing on an adhesive substrate, and subject 
to durotactic growth cone traction. Firstly, the model predicts that, depending on the local 
substrate stiffness, axons may exhibit positive or negative durotaxis, and we show that this key 
property entails the existence of attractive zones of preferential stiffness in the substrate domain. 
Second, we show that axons will exhibit reflective and refractive behaviour across interface 
between regions of different stiffness, a basic process which may serve in the deflection of axons. 
Lastly, we test our model in a biological scenario wherein durotaxis was previously identified 
as a possible guidance mechanism in vivo. Overall, this work provides a general mechanistic 
theory for exploring complex effects in axonal mechanotaxis and guidance in general.

. Introduction

The establishment of the neuronal network is a fundamental event in neurodevelopment in which neurons send out slender 
rocesses, called axons, to meet other target cells – e.g. other neurons – and physically interconnect with them. During this process, 
he axons migrates through the extracellular environment towards its functional target, guided by a combination of environmental 
ues, including gradients in chemical or mechanical properties in their environment. This general process defines axon guidance. 
A developing axon is composed of two main parts (see Fig.  1): the axonal shaft, a long filament-like section that contains 

he axoplasm made up of parallel microtubules cross-linked through microtubule-associated tau proteins, neurofilaments, and 
ctomyosin; and the growth cone, a lamellipodium-like, actin-supported structure located at the tip of the axonal shaft (Franze, 
020; Oliveri and Goriely, 2022). The growth cone performs both locomotory and sensory functions and, thus, plays a key role 
n pathfinding. Historically, the focus has been mostly on chemotaxis, the guidance of axons by gradients in the concentration of 
iffusing chemicals (Mortimer et al., 2008). The underlying mechanisms and molecular actors of chemotaxis are relatively well 
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Table 1
List of symbols.
 Symbol Meaning Dimension

 𝑓 Cross-linker tension 𝐹 =𝑀𝐿𝑇 −2  
 𝑓0 Cross-linker characteristic detachment force 𝐹  
 𝑥 Cross-linkers extension 𝐿  
 𝜅 Spring constant of cross-linkers 𝐹𝐿−1  
 𝜅′ Effective substrate stiffness 𝐹𝐿−1  
 𝜒 = 𝜅′∕𝜅 Dimensionless substrate stiffness Dimensionless 
 𝜒∗ Optimal (dimensionless) substrate stiffness Dimensionless 
 𝑘off Cross-linkers off-rate 𝑇 −1  
 𝑘on Cross-linkers on-rate 𝑇 −1  
 𝜚 Density of bound cross-linkers 𝐿−1  
 𝑣 Extension speed of bound cross-linkers 𝐿𝑇 −1  
 𝑐free Concentration of free cross-linkers 𝐿−3  
  Typical volume of binding reactions 𝐿3  
 𝑠0 = 𝑘on𝑐free Attachment rate of cross-linkers 𝑇 −1  
 𝐵 Kinetic binding rate of cross-linkers 𝐿−1𝑇 −1  
 𝑈 Kinetic unbinding rate of cross-linkers 𝐿−1𝑇 −1  
 𝑇 Traction force exerted by an actin filament 𝐹  
 𝑀 Myosin contraction force 𝐹  
 𝑉 Actin filament velocity relative to the substrate 𝐿𝑇 −1  
 𝑁 Total number of bound cross-linkers Dimensionless 
 𝑁∗ Total number of bound cross-linkers at optimal stiffness Dimensionless 
 𝐾 = 𝑠0∕𝑘off Binding constant of cross-linkers Dimensionless 
 𝓁 Typical cross-linker extension length 𝐿  
 𝑞 = 𝑓0∕𝜅𝓁 Bond strength parameter Dimensionless 
 𝜈 = 𝑉 ∕𝑘off𝓁 Dimensionless actin velocity Dimensionless 
 𝛯 Friction coefficient between actin and cytoplasm 𝐹𝑇𝐿−1  
 𝜉 = 𝑘off𝛯𝑓0∕𝜅 Friction force scale between actin and cytoplasm 𝐹  
 𝑟∗ ≈ 0.387 Argument of the maximum of ; see (16) Dimensionless 
 𝜑0 Growth cone opening angle Dimensionless 
 𝜌 Density of focal adhesion at growth cone periphery 𝐿−1  
 𝒓 = (𝑥, 𝑦) Position of the growth cone 𝐿  
 𝜃 Orientation angle of the axon shaft Dimensionless 
 𝒕 Tangent vector to the growth cone axis Dimensionless 
 𝒕⟂ Normal vector to the growth cone axis Dimensionless 
 𝑆0 , 𝑆, 𝑠, 𝜎 Arclength parameters in the various configurations 𝐿  
 𝝉 Unit tangent vector to the axon shaft Dimensionless 
 𝝉⟂ Unit normal vector to the axon shaft Dimensionless 
 𝑚 Internal moment in the axon shaft 𝐹𝐿  
 𝒏 = (𝑛𝑥 , 𝑛𝑦) Internal resultant force in the axon shaft 𝐹  
 𝑛 = 𝒏 · 𝝉 Internal longitudinal force in the axon shaft 𝐹  
 𝜆 Stretch ratio of the axon shaft Dimensionless 
 𝛾 Growth stretch factor Dimensionless 
 𝛼 Axon shaft elastic stretch ratio Dimensionless 
 𝜂 Morphoelastic viscosity 𝐹𝑇  
 𝜏𝑘 Timescale of curvature remodelling 𝑇  
 𝑛0 Threshold tension for growth 𝐹  
  Bending stiffness of the axon shaft 𝐹𝐿2  
  Longitudinal stiffness of the axon shaft 𝐹  
 𝒃 = (𝑏𝑥 , 𝑏𝑦) Friction force density between axon and substrate 𝐹𝐿−1  
 𝜁 Friction coefficient between axon and substrate 𝐹𝑇𝐿−2  
  = 𝜁∕𝜂 Ratio of adhesion to viscosity effects Dimensionless 
  Characteristic bending length 𝐿  
 𝛬 Characteristic growth length 𝐿  
 𝑭 External force applied to axon tip 𝐹  
 𝑐 Axon growth speed 𝐿𝑇 −1  
 𝑘 Curvature of the axon 𝐿−1  
 𝑘̂ Intrinsic curvature of the axon 𝐿−1  
 𝒓̂ Position of the axon clamp 𝐿  
 𝝉̂ Tangent vector to the axon at the clamp Dimensionless 
 𝝂̂ Normal vector to the axon at the clamp Dimensionless 
 𝜃̂ Axon angle w.r.t. the horizontal at base of dynamic section Dimensionless 
 𝑊 Axon shaft elastic energy density 𝐹  
 𝛼𝑇 = 𝑇2∕𝑇1 Traction ratio at an interface Dimensionless 
 𝛽 Deflection index at an interface Dimensionless 

described, and have been featured in numerous models (Oliveri and Goriely, 2022). In contrast, durotaxis, the directed motion of 
cells along gradients in extracellular matrix stiffness (Shellard and Mayor, 2021; Espina et al., 2022), has been identified in axons 
mostly in the last decade and is only partially understood.
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Fig. 1. The multiscale structure of the axon. (a) Molecular scale. An actin filament is pulled towards the rear of the growth cone by myosin motors. Actin is 
coupled mechanically to the substrate via transmembrane adhesive proteins which may detach and attach, producing an overall frictional force. This frictional 
force is key for axon locomotion. (b) Growth cone scale: schematic representation of the cytoskeleton in a migrating neurite. The shaft (lower part) is essentially 
composed of cross-linked microtubules surrounded by an actomyosin sheath. The growth cone is a lamellipodium-like structure that confers motility to the 
neurite and probes the environment. (c) Cellular scale. Schematic of a typical growing neuron showing the soma, the dendrites, and the axon with its growth 
cone.

For example, experiments on xenopus optic nerve guidance have suggested the existence of negative durotaxis, i.e. migration 
down the stiffness gradient, from high to low stiffness (Koser et al., 2016; Thompson et al., 2019). In an apparent contradiction, the 
same group observed that retinal axons also progress faster on stiffer regions (see Fig. 6 in Koser et al., 2016). At the scale of an 
entire axon fascicle, this effect then results in differential migration speed, hence a deflection of the axonal bundle towards softer
regions, akin to the bending of light rays in a graded refractive medium (Oliveri et al., 2021). Similarly, axons in chick embryos grow 
towards softer zones of the somitic segments, strikingly, even in the context of inhibited chemotactic signalling (Schaeffer et al., 
2022; Sáez and Venturini, 2023). Although mounting evidence supports the presence of neuronal durotaxis in vivo, its specific role 
and underlying mechanisms remain unclear.

By definition, durotaxis is a mechanics-based mechanism. Hence, a complete description of durotaxis must include the mechanical 
effects underlying growth and locomotion. The precise nature and mechanism of axonal growth have been long debated and remain 
controversial (Franze, 2020; Oliveri and Goriely, 2022; Suter and Miller, 2011). Generically, growth refers to the general process 
by which a body changes form by virtue of a change in mass (Goriely, 2017). In axons, the emerging view is that traction forces 
generated by the growth cone create mechanical tension along the trailing shaft; the latter then elongates in response to these 
forces (O’Toole et al., 2008; Suter and Miller, 2011; Nguyen et al., 2013; Holland et al., 2015; Goriely et al., 2015; Recho et al., 
2016; Purohit and Smith, 2016; Miller and Suter, 2018; Franze, 2020; Oliveri and Goriely, 2022; Oliveri et al., 2022). Thus, we 
define axonal growth as the irreversible elongation of the axonal shaft resulting from these traction forces and supported by material 
addition. Microscopically, the mechanical forces generated by the growth cone arise from the mechanical coupling between the 
growth cone’s actomyosin network and the substrate (Chan and Odde, 2008; Franze, 2020; Isomursu et al., 2022; Raffa, 2023). 
The effect of matrix compliance in this process can be understood through the so-called molecular-clutch hypothesis (Elosegui-Artola 
et al., 2018). Within the growth cone, actin undergoes a sustained retrograde flow, from the periphery of the growth cone to 
the base, generated by active myosin motors located at the base of the growth cone. This actin flow, in turn, generates micro-
frictional interactions between the actin and the substrate, mediated by transmembrane adhesion complexes that may form and 
detach stochastically.

Overall, our general problem is to establish a physical law of motion for axons embedded in a heterogeneous mechanical 
environment. Here, we focus on two main problems. The first problem is to understand how these molecular interactions between 
substrate and axon result in the generation of an overall force. Then, from the molecular mechanics of growth cone locomotion, the 
second problem is to understand how this force affects the overall trajectory of the axon.

To address these problems, we develop a multiscale, mechanical model for axonal durotaxis, summarised in Fig.  2. We start 
with the molecular scale by describing the mechanical balance of a single actin filament interacting with a substrate (Section 2) 
and we derive the one-dimensional locomotory force resulting from this interaction. At the mesoscale (Section 3), we integrate the 
contributions of all actin filaments forming the growth cone actomyosin meshwork to compute the net force produced by the growth 
cone. Finally, at the macroscale (Section 4), this growth cone locomotory force is integrated in a rod theory to predict the trajectory 
of the whole axon.

Important physical quantities are listed in Table  1.
3 
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Fig. 2. General structure of the model. From left to right: microscopic scale—an actin filament is modelled as a rigid rod moving with velocity 𝑉  w.r.t. the 
substrate. The filament is connected to the substrate through an evolving collection of springs modelling adhesive cross-linkers and the deformable substrate; 
mesoscopic scale—the growth cone is viewed as a continuous distribution of centripetally-aligned actin filaments with individual traction forces summing up to 
generate global net force on the axonal shaft; macroscopic scale—the axon is modelled as a morphoelastic filament subject to frictional forces between the shaft 
and the substrate and growth-cone-induced locomotory force.

2. The microscopic model

2.1. Adhesion of one actin filament

The mechanical interaction between the substrate and the cytoskeleton is mediated by adhesion proteins, henceforth generically 
termed cross-linkers. In the growth cone, tension in the substrate is generated by the movement of actin which stretches these cross-
linkers. This tension opposes the retrograde motion of actin and pulls on the substrate, resulting reciprocally in a reaction force acting 
upon the axon shaft. The cross-linkers randomly bind and unbind, with a rate of unbinding that depends on their level of tension (Bell 
et al., 1984; Chan and Odde, 2008). Overall, random detachment and attachment of cross-linkers, combined with stretch-induced 
tension result in emergent frictional interactions between the actin and the substrate which depends on substrate stiffness (Chan 
and Odde, 2008; Sens, 2013). The emergence of this frictional force is the central mechanism considered here underlying growth 
cone locomotion.

To model the mechanical interaction between a single actin filament and the substrate, we adapt the approach of Sens (2013). 
The filament is modelled as a straight, infinite rigid rod moving relative to the substrate with velocity 𝑉 , as shown in Fig.  3 (we also 
introduce the longitudinal position 𝑋 = 𝑉 𝑡, with 𝑡 denoting the time coordinate). In the steady regime studied here, 𝑉  is constant 
in time. We model the cross-linkers as linearly-elastic springs connecting the actin filament to the substrate. Each spring has an 
individual tension 𝑓 , elongation 𝑥, and spring constant 𝜅 related through Hooke’s law by 

𝑓 = 𝜅𝑥. (1)

The cross-linker tension can be related to the time 𝛥𝑡 elapsed since its attachment. Indeed, for a perfectly rigid substrate, the tension 
of a single cross-linker since attachment is 𝑓 ≈ 𝜅𝑉 𝛥𝑡 (assuming that cross-linkers form unstretched, and neglecting the geometric 
nonlinearity due to the distance between the actin filament and the substrate). The situation is more complex in the case of a 
deformable substrate, where the cross-linkers may interact indirectly and non-locally with one another through short- and long-
range deformations of the substrate (Nicolas et al., 2008). This deformation may be expressed in terms of the Green solution for an 
infinite half-plane subject to surface traction (Hwu, 2010; Sens, 2013).

Here, for simplicity, we assume that the substrate is soft so that cross-linkers interact mechanically as the substrate deforms 
almost uniformly. The substrate is then modelled as a single spring 𝜅′ with which all cross-linkers are connected in parallel. To 
model the kinetics of cross-linker detachment, we posit a Bell-type law (Bell, 1978), i.e. we assume that the probability that a 
cross-linker detaches in a small time-interval 𝛥𝑡 is related to its tension 𝑓 according to 

𝑝off = 𝑘off𝛥𝑡 e𝑓∕𝑓0 , (2)

where 𝑓0 is the characteristic force scale of detachment and 𝑘off  is the kinetic off-rate at rest. Further, we assume that cross-linkers 
form in the unstretched state at a constant rate 𝑘on, so the probability of attachment during 𝛥𝑡 is 

𝑝on = 𝑘on𝛥𝑡. (3)

Finally, we focus on a small section of the filament at the growth cone edge. Therefore, we assume that all material parameters are 
constant in space, which reduces the problem effectively to a zero-dimensional problem.
4 
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Fig. 3. Structure of the microscopic model. The actin filament moves with constant velocity 𝑉  parallel to the substrate. We assume that all cross-linkers (brown 
springs with constant 𝜅) interact with the same substrate spring (green spring with constant 𝜅′).

2.1.1. Mean-field treatment
The dynamics of focal adhesions has been previously analysed using continuum or computational approaches (e.g. Srinivasan and 

Walcott, 2009; Sabass and Schwarz, 2010; Bressloff, 2020), in particular with a focus on the role of substrate compliance in Chan and 
Odde (2008), Bangasser and Odde (2013) and Sens (2013). Similar to the mean-field approaches of Bangasser and Odde (2013) and 
Sens (2013) we here adopt a continuum perspective where we view the set of bound cross-linkers and their respective mechanical 
state as a continuum quantity. That is, we first consider the distribution of the extensions of bound cross-linkers. Let 𝜚 be the 
density of bound cross-linkers per extension level, such that, at time 𝑡 there are (on average) d𝑁 = 𝜚 (𝑥, 𝑡) d𝑥 bound cross-linkers 
with extension in the infinitesimal interval [𝑥, 𝑥 + d𝑥]. This density obeys the Lacker–Peskin equation (Srinivasan and Walcott, 2009) 

𝜕𝜚
𝜕𝑡

+ 𝑣(𝑥, 𝑡)
𝜕𝜚
𝜕𝑥

= 𝐵(𝑥, 𝑡) − 𝑈 (𝑥, 𝑡), (4)

where 𝐵(𝑥, 𝑡) and 𝑈 (𝑥, 𝑡) denote, respectively, the kinetic binding and unbinding rates for cross-linkers at extension 𝑥; and 𝑣 (𝑥, 𝑡) is 
the extension rate of bound cross-linkers. Assuming a large, constant pool of free (unbound) cross-linkers with concentration 𝑐free, 
binding occurs at constant rate 𝑠0 = 𝑘on𝑐f ree (with unit inverse time), with  the typical volume where binding reactions take 
place. Assuming that cross-linkers attach with zero extension, we posit an attachment rate of the form 

𝐵(𝑥, 𝑡) = 𝑠0𝛿(𝑥), (5)

with 𝛿 denoting the Dirac delta function. The Bell-type law for cross-linker detachment can be expressed as (Sens, 2013) 
𝑈 (𝑥, 𝑡) = 𝑘off e𝜅𝑥∕𝑓0𝜚(𝑥, 𝑡). (6)

The extensions 𝑥 and 𝑥s of a cross-linker and the substrate, respectively, obey the virtual kinematic relation 
𝛿𝑥 + 𝛿𝑥s − 𝛿𝑋 = 0, (7)

where 𝛿𝑥, 𝛿𝑥s and 𝛿𝑋 denote virtual displacements of the cross-linker, the substrate and the actin filament, respectively.
Since we assumed previously that all cross-linkers are connected to the same substrate spring (𝜅′), the force balance is 

𝜅′𝑥s = ∫

∞

0
𝜅𝑥𝜚(𝑥) d𝑥. (8)

In a virtual displacement of the filament we have 

𝜅′𝛿𝑥s = ∫

∞

0
𝜅𝛿𝑥𝜚(𝑥) d𝑥 (9)

(the density 𝜚 is unaffected in a virtual displacement). Using (7) to remove 𝛿𝑥s we obtain 
𝜒(𝑉 𝛿𝑡 − 𝛿𝑥) = 𝑁𝛿𝑥, (10)

where 𝜒 ∶= 𝜅′∕𝜅 is a dimensionless measure of the substrate stiffness; and where the total amount of bound cross-linkers is 

𝑁(𝑡) = ∫

∞

0
𝜚(𝑥, 𝑡) d𝑥. (11)

Since 𝑣𝛿𝑡 = 𝛿𝑥, we obtain 
𝑣 = 𝑉

1 +𝑁∕𝜒
, (12)

and we can rewrite the governing equation for 𝜚, (4), as 
𝜕𝜚

+ 𝑉 𝜕𝜚
= 𝑠0𝛿(𝑥) − 𝑘off e𝜅𝑥∕𝑓0𝜚(𝑥, 𝑡). (13)
𝜕𝑡 1 +𝑁∕𝜒 𝜕𝑥

5 
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2.1.2. Steady-state traction
Henceforth, we restrict our attention to time-independent solutions of the problem so we set 𝜕𝜚∕𝜕𝑡 = 0 in (13). The total force 

𝑇  exerted by the cross-linkers on the actin filament is 

𝑇 = ∫

∞

0
𝜅𝑥𝜚(𝑥) d𝑥, (14)

which, after integration of (13), yields 

𝑇 (𝜒, 𝜈) = 𝑓0𝐾
(

𝑞
𝜒𝜈

(𝜒 +𝑁)
)

. (15)

Here the dimensionless parameters 𝐾 ∶= 𝑠0∕𝑘off , 𝑞 ∶= 𝑓0∕𝜅𝓁 and 𝜈 ∶= 𝑉 ∕𝑘off𝓁 denote respectively the binding constant of 
cross-linkers, their bond strength, and a dimensionless measure of actin velocity (with 𝓁 the arbitrary typical extension length 
of cross-linkers); and  is the special function defined as 

 (𝑟) ∶= 𝑟e𝑟 ∫

∞

0
𝑦 exp (−𝑟e𝑦) d𝑦, 𝑟 > 0. (16)

The total number of cross-linkers, 𝑁 , defined in (11) and present in (15), satisfies at steady state the equation 

𝑁 = 𝐾
𝜈 ∫

∞

0
exp

[

𝑞(𝜒 +𝑁)
𝜒𝜈

(

1 − exp
(

𝜒𝑦
𝑞(𝜒 +𝑁)

))]

d𝑦. (17)

2.1.3. Force balance
We have derived in (15) and (17) a relation linking traction generation with actin velocity and substrate stiffness. However, the 

motion of actin itself results from the activity of myosin motors at the rear of the growth cone, thus, the dimensionless velocity 𝜈
is not prescribed, but is instead an unknown that is obtained from the force balance between actin and the myosin motors.

The forces acting on a single actin filament are generated by myosin contraction (Lin et al., 1996) modelled as a constant force 
𝑀 . In addition, actin is subject to viscous friction with the cytoplasm (with constant 𝛯), as well as the traction force generated by 
the cross-linkers, 𝑇 (𝜒, 𝜈) given by (15). Thus, neglecting inertial effects, the force balance reads 

𝑀 − 𝑇 (𝜒, 𝜈) − 𝛯𝑉 = 0. (18)

We define 𝑢 ∶= 𝑞
(

1 + 𝜒−1𝑁
)

∕𝜈 and 𝜉 ∶= 𝑘off 𝛯 𝑓0∕𝜅, to remove the dependence upon 𝜈 from (17) and (18): 

𝜒
(

𝑀 − 𝑓0𝐾 (𝑢)
)

𝑢 − 𝜉 (𝜒 +𝑁) = 0, (19a)

𝑁 =
𝐾𝑢𝜒

𝑞 (𝜒 +𝑁) ∫

∞

0
exp

[

𝑢
(

1 − exp
(

𝜒𝑦
𝑞(𝜒 +𝑁)

))]

d𝑦, (19b)

where we have used (12). For a given 𝜒 , (19) forms a system of equations for the unknowns (𝑢,𝑁). The solution to that system can 
be substituted into (15) to obtain the traction 

𝑇 (𝜒) = 𝑓0𝐾 (𝑢) , (20)

where 𝑢 is viewed as an implicit function of 𝜒 . This expression relates the traction force to the substrate stiffness directly, in contrast 
to the work of Sens (2013) where the traction force is obtained for a given actin velocity 𝜈.

2.2. Optimal stiffness

As can be seen, for a range of parameters, the traction-stiffness function 𝑇 (𝜒) may exhibit global maximum at a stiffness 𝜒∗. We 
call 𝜒∗ the optimal stiffness defined as the (dimensionless) stiffness where traction is maximal 𝑇max = 𝑇 (𝜒). At that value, the ability 
of the axon to develop traction forces on the substrate is maximal. From (20) we see that 𝑇 (𝜒) is maximal when  (𝑢 (𝜒)) is maximal. 
The function  (𝑟) has a global maximum at 𝑟 = 𝑟∗ ≈ 0.387 (at which point (𝑟∗) ≈ 0.298), and therefore 𝑇 (𝜒) is maximised when 
𝑢 (𝜒) = 𝑟∗.

Substituting 𝑢 = 𝑟∗ and 𝑁 = 𝑁∗ into (19) and rearranging the terms, we obtain 

𝜒∗ =
𝜉𝑁∗

𝑟∗
(

𝑀 − 𝑓0𝐾 (𝑟∗)
)

− 𝜉
, (21a)

𝑁∗ =
𝐾𝑟∗𝜒∗

𝑞 (𝜒∗ +𝑁∗) ∫

∞

0
exp

[

𝑟∗
(

1 − exp
(

𝜒∗𝑦
𝑞(𝜒∗ +𝑁∗)

))]

d𝑦. (21b)

This defines a system of two equations for the two unknowns (𝜒∗, 𝑁∗). Remarkably, there exists a closed-form solution for this 
system given by 

𝜒∗ =
𝜉𝐾𝑟∗e𝑟∗𝛤 (0, 𝑟∗)

𝑟∗
(

𝑀 − 𝑓0𝐾 (𝑟∗)
)

− 𝜉
, 𝑁∗ = 𝐾𝑟∗e𝑟

∗
𝛤
(

0, 𝑟∗
)

, (22)

with 𝛤 𝑠, 𝑥  the upper incomplete gamma function.
( )
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Since 𝑁∗ is positive if 𝜒∗ is positive, we see from (22) that the condition for the existence of a positive local maximum 𝜒∗ is 
𝑟∗

(

𝑀 − 𝑓0𝐾
(

𝑟∗
))

− 𝜉 > 0. (23)

When this condition is not satisfied, the traction is a strictly increasing function of 𝜒 with a horizontal asymptote at 𝜒 → ∞. 
Importantly, we will show in Section 3 that the emergence of negative durotaxis is directly predicated upon the existence of a 
positive optimal stiffness via the condition (23). Moreover, the second derivative 𝑇 ′′(𝜒∗) of the traction 𝑇 (𝜒) at the optimal stiffness 
𝜒∗ characterises the behaviour of the system near this optimum. Differentiating (20) twice w.r.t. 𝜒 and setting 𝜒 = 𝜒∗ we obtain 

𝑇 ′′ (𝜒∗) = 𝑓0𝐾′′ (𝑟∗
)

𝑢′(𝜒∗)2. (24)

An exact expression for 𝑢′ (𝜒∗) in the previous equation is obtained by differentiating (19) w.r.t. 𝜒 at 𝜒 = 𝜒∗, providing a system of 
two equations for the unknowns 𝑢′ (𝜒∗) and 𝑁 ′ (𝜒∗), which can be solved to obtain 

𝑢′(𝜒∗) =

[

1 + 1
𝑟∗

(

e𝑟∗

Chi (𝑟∗) − Shi (𝑟∗)
+

𝑘off𝛯
𝑘off𝛯 + 𝑟∗

(

𝐾𝜅 (𝑟∗) −𝑀𝜅∕𝑓0
)

)]−1

, (25)

with Chi and Shi the hyperbolic cosine and sine integrals, respectively.

2.3. The effect of myosin contractility

The parameter 𝑀 quantifies the force of myosin contraction, which plays an important role in axon guidance (McCormick and 
Gupton, 2020; Turney and Bridgman, 2005). The parameter 𝑀 changes qualitatively the traction-stiffness curve. Indeed, we define 
𝑀crit the value of 𝑀 at which the inequality (23) is an equality, that is, 

𝑀crit ≝ 𝑓0𝐾
(

𝑟∗
)

+ 𝜉∕𝑟∗. (26)

This critical force defines two distinct behaviours.
First, for 𝑀 > 𝑀crit, when myosin contraction is sufficiently large, as shown in Fig.  4, there exists an optimal stiffness and the 

behaviour of the system is controlled by three important features of the traction-stiffness curve: (i) the optimal stiffness 𝜒∗; (ii) the
curvature 𝑇 ′′ (𝜒∗) defining how quickly traction changes close to the optimal stiffness; (iii) the asymptotic traction generated on a 
rigid substrate 𝑇∞ ∶= lim𝜒→∞ 𝑇 (𝜒). We note that the optimal stiffness 𝜒∗ is a decreasing function of 𝑀 and tends to zero as 𝑀 → ∞; 
see (22). As can be seen from (24) and (25), 𝑇 ′′ (𝜒∗) is a bounded, increasing function of 𝑀 such that 

𝑇 ′′ (𝜒∗) →
𝑀→∞

𝑓0𝐾′′ (𝑟∗
)

(

1 − e−𝑟∗

𝑟∗𝛤 (0, 𝑟∗)

)−2
(27)

This asymptotic value is the maximal curvature achievable at 𝜒∗ by modulating contractility 𝑀 . We see that the curvature increases 
as 𝜒∗ → 0 as 𝑀 → ∞. However, there is a physical bound to the value of 𝑀 depending on available binding sites. This relationship 
shows that the larger the myosin contraction, the faster an axon will react to changes in stiffness close to the optimal stiffness.

To investigate the behaviour of 𝑇∞ in the limit 𝑀 → ∞, we first divide (19a) by 𝜒 and take the limit 𝜒 → ∞ to obtain 
𝑢
(

𝑀 − 𝑓0𝐾 (𝑢)
)

− 𝜉 = 0. (28)

Note that 𝑇∞ = 𝑓0𝐾 (𝑢) in the above equation and therefore we are concerned with the asymptotics of  (𝑢) in the limit 𝑀 → ∞. 
Showing that 𝑢 ∼ 𝜉∕𝑀 as 𝑀 → ∞, it follows that 𝑇∞ ∼ 𝑓0𝐾 (𝜉∕𝑀) → 0.

Second, when myosin contraction is weak, that is for 𝑀 < 𝑀crit, there is no maximum and traction is a monotonically increasing 
function of 𝜒 , plateauing to 𝑇∞ = lim𝜒→∞ 𝑇 (𝜒). Noting that 𝑢 ∼ (

𝜉 + 𝑓0𝐾
)

∕𝑀 as 𝑀 → 0 we obtain 

𝑇∞ ∼
𝑀→0

𝑓0𝐾
(

𝜉 + 𝑓0𝐾
𝑀

)

∼
𝑓0𝐾𝑀
𝜉 + 𝑓0𝐾

. (29)

We see that as 𝑀 increase past 𝑀crit, 𝑇∞ decreases. Hence, for large myosin contraction, axons growing on a very rigid substrate 
will exert a reduced traction.

3. The mesoscopic model

Macroscopically, the total force generated by the growth cone results from the centripetal flow of all actin filaments organised 
radially in the lamellipodium towards the growth cone base. We assume that the specific shape of the growth cone has little effect 
on the net force generated by the cone. Hence we model it as a circular sector with central angle 2𝜑0 and radius 𝑅; see Fig.  2. Here, 
we denote by 𝒓 the position of the base of the growth cone in the laboratory frame equipped with the canonical basis {𝒆𝑥, 𝒆𝑦

}

. We 
denote by 𝒕 the unit vector along the axis of symmetry of the growth cone that is also the tangent to the axon attached to the growth 
cone, and 𝒕⟂ the normal unit vector to 𝒕. We define 𝒆𝜑 = cos𝜑 𝒕 + sin𝜑 𝒕⟂, with 𝜑 ∈ [−𝜑0, 𝜑0], the unit vector pointing outward in 
the direction 𝜑.

The force density applied at the edge of the disk along the direction 𝜑 depends on the local substrate stiffness at the lamellipodium 
edge at this location, i.e. at the point 𝒓 + 𝑅𝒆𝝋. Neglecting the mutual mechanical interactions between the filaments, the resultant 
force applied at the distal end of the axon shaft is given by 

𝑭 (𝒓, 𝒕) =
𝜑0
𝜌𝑇

(

𝜒
(

𝒓 + 𝑅𝒆𝝋
))

𝒆𝝋 𝑅 d𝜑. (30)
∫−𝜑0
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Fig. 4. (a) Profile of the traction-stiffness curve 𝑇 (𝜒). For small myosin concentration, 𝑀 < 𝑀crit, the traction increases monotonically as a function of the 
stiffness. For large myosin concentration, 𝑀 > 𝑀crit, traction has a maximum value at the optimal stiffness 𝜒∗. (b) Profile of actin speed as a function of stiffness. 
For small myosin concentration, 𝑀 < 𝑀crit, the speed decreases monotonically as a function of the stiffness. For large myosin concentration, 𝑀 > 𝑀crit, actin 
speed has a minimum value at the optimal stiffness 𝜒∗.

with 𝜌 the density of adhesion sites per unit arclength along the growth cone edge (which we assume to be constant); and where 
𝑇 (𝜒) is the individual filament force given by (20) evaluated at the edge of the growth cone where adhesion sites are located. Note 
that, since all the filaments point towards the base of the growth cone, there is no induced torque about that point, thus changes in 
direction may only be induced through an asymmetric distribution of forces across the growth cone. The expression (30) is difficult 
to work with as it implies evaluating 𝑇  for every 𝜑. To make progress, we assume that the stiffness field varies slowly in the vicinity 
of the growth cone – equivalently that the growth cone is small – so we expand (30) to 𝑂(𝑅2) to obtain 

𝑭 (𝒓, 𝒕) = 2𝑅𝜌 sin𝜑0𝑇 (𝜒) 𝒕 + 𝑅2𝜌𝜑0𝑇
′ (𝜒)𝐏

(

𝜑0
)

∇𝜒 + 𝑂(𝑅3). (31)

where 𝜒 and ∇𝜒 are evaluated at 𝒓; and where the tensor 𝐏 reflects the geometry of the growth cone only and is given by 

𝐏
(

𝜑0
)

∶= ∫

𝜑0

−𝜑0
𝒆𝝋 ⊗ 𝒆𝝋

d𝜑
𝜑0

= 𝟏 +
sin 2𝜑0
2𝜑0

(

𝒕⊗ 𝒕 − 𝒕⟂ ⊗ 𝒕⟂
)

, (32)

Here, 𝟏 is the identity tensor, and ‘⊗’ denotes the tensor product (i.e. given vectors 𝒖 and 𝒗, the Cartesian components of 𝒖⊗ 𝒗 are 
(𝒖⊗ 𝒗)𝑖𝑗 = 𝑢𝑖𝑣𝑗). From this expansion, the role of substrate stiffness and its gradient can be interpreted physically.

The first term on the r.h.s. of (31) is a stiffness-dependent force component in the current direction of the axon, regulating the 
longitudinal growth velocity. The second term captures the durotactic effect induced by a gradient in substrate stiffness ∇𝜒 , which 
will cause the axon to steer away or towards stiffness gradients. In the special cases 𝜑0 = 𝜋∕2 (half-disk) or 𝜑0 = 𝜋 (full disk), the 
durotactic component is aligned with ∇𝜒 as 𝐏 (𝜋) = 𝐏 (𝜋∕2) = 𝟏. More in general, the durotactic force component is not aligned with 
∇𝜒 as ∇𝜒 × 𝐏∇𝜒 ≠ 𝟎. However, since 𝐏 is symmetric positive, we have that ∇𝜒 · (𝐏∇𝜒) ≥ 0, thus, if 𝑇 ′(𝜒) > 0, the durotactic force 
makes an acute angle with the stiffness gradient. Consequently, the orientation of the durotactic force, that is, whether the axon 
progresses towards soft or stiff substrate, is only governed by the sign of 𝑇 ′ (𝜒). We have positive durotaxis if 𝑇 ′ (𝜒) > 0 and negative 
durotaxis if 𝑇 ′ (𝜒) < 0. Note that, as expected, the normal component of the durotactic force vanishes when the axon is aligned with 
the gradient.

From (31), we can directly obtain the factors determining the strength of the durotactic force. We define the dimensionless
durotactic sensitivity as 

𝜗(𝜒) =
𝜑0

sin𝜑0

𝑇 ′ (𝜒)
𝑇 (𝜒)

, (33)

measuring the relative effect of the deflective force to the longitudinal traction. From Section 2, it follows that 𝜗 vanishes at the 
optimal stiffness 𝜒∗, the stationary point of 𝑇 . For 𝜒 < 𝜒∗, we have 𝜗 > 0 and, conversely, 𝜗 < 0 for 𝜒 > 𝜒∗.

From the mesoscopic model, we conclude that: Axons growing on substrates with stiffness smaller than the optimal stiffness 𝜒∗ can only 
exhibit positive durotaxis; conversely, axons on substrates stiffer than the optimal stiffness can only exhibit negative durotaxis. In particular, 
if condition (23) is violated, axons can only undergo positive durotaxis.

4. The macroscopic model

In the previous two sections, we have derived the overall net force applied to the tip of the growing axon due to the interaction 
of the growth cone with the substrate. We can now use this force and model the axon as a morphoelastic rod, i.e. a growing elastic 
rod (see Chap. 5 and 6 of Goriely, 2017) subject to the end loading due to the growth cone and to the frictional force exerted by 
the substrate, thus generalising the approach of O’Toole et al. (2008) to curved trajectories.
8 
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Fig. 5. A morphoelastic rod model. Left: At a point 𝑠 in the current configuration, we defined the tangent vector 𝝉 and normal vector 𝝉⟂ through the angle 𝜃. 
Right: In the growth model we assume that a infinitesimal element of the rod located initially at 𝑆0 is subject to both a growth deformation 𝛾 and an elastic 
deformation 𝛼, such that the total stretch is 𝜆 = 𝛼𝛾.

4.1. Morphoelastic rod model

Initially, a morphoelastic rod is defined by a smooth curve 𝑹0
(

𝑆0
)

=
(

𝑋0
(

𝑆0
)

, 𝑌0
(

𝑆0
))

∈ R2 with arclength 𝑆0 ∈
[

0, 𝐿0
]

. 
We choose 𝑆0 = 0 to be at the base (the soma) and 𝑆0 = 𝐿0 at the axon tip (growth cone). As the axon grows and deforms 
elastically under loads, the rod adopts a new current configuration parameterised by the material coordinate 𝑆0 and time 𝑡 by 
𝒓
(

𝑆0, 𝑡
)

=
(

𝑥
(

𝑆0, 𝑡
)

, 𝑦
(

𝑆0, 𝑡
))

. We define 𝑠 (𝑆0, 𝑡
) the arclength in the current configuration, i.e. the contour length between the 

base and the material point that was at position 𝑆0 and time 𝑡 = 0. The Frenet–Serret frame of the current curve is composed of the 
unit tangent vector 𝝉 = 𝜕𝒓∕𝜕𝑠 (pointing towards the growth cone) and the unit normal vector 𝝉⟂, perpendicular to 𝝉. Both can be 
encoded by a single angle 𝜃 between the 𝑥-axis and the tangent vector so that 

𝝉 = (cos 𝜃, sin 𝜃) , 𝝉⟂ = (− sin 𝜃, cos 𝜃) . (34)

At the tip, the orientation of the axon agrees with that of the growth cone so that 𝝉(𝐿0) = 𝒕 and 𝝉⟂(𝐿0) = 𝒕⟂. Then the Frenet–Serret 
equations can be written as 

𝜕𝑥
𝜕𝑆0

= 𝜆 cos 𝜃,
𝜕𝑦
𝜕𝑆0

= 𝜆 sin 𝜃, 𝜕𝜃
𝜕𝑆0

= 𝜆𝑘, 𝜆 = 𝜕𝑠
𝜕𝑆0

, (35)

where 𝜆 is the stretch and 𝑘 the signed curvature. The pair of scalar fields (𝜆, 𝑘) then fully describes the geometry of the rod 
(stretching and bending) (see Fig.  5).

Neglecting inertial effects and body torques, the balance of linear and angular momenta is expressed in terms of the internal 
resultant force 𝒏 = (𝑛𝑥, 𝑛𝑦) and moment 𝑚 applied by a cross-section 𝑆+

0  onto a cross-section 𝑆−
0  as (see chapter 5 of Goriely, 2017, 

for details) 
𝑛′𝑥 + 𝜆𝑏𝑥 = 0, (36a)

𝑛′𝑦 + 𝜆𝑏𝑦 = 0, (36b)

𝑚′ + 𝑛𝑦 cos 𝜃 − 𝑛𝑥 sin 𝜃 = 0, (36c)

where the apostrophe denoting differentiation w.r.t. 𝑆0; and 𝒃 = (𝑏𝑥, 𝑏𝑦) is a density of body force per unit current length, that is 
used to model the adhesion between the growing shaft and the substrate as a linear frictional force with coefficient 𝜁 (O’Toole et al., 
2008; Oliveri et al., 2021; Oliveri and Goriely, 2022) 

𝒃 = −𝜁 𝒓̇. (37)

Here the overdot denotes the material derivative, linked to the Eulerian derivative through the formula 𝒓̇ − 𝑠̇𝝉 = 𝜕𝒓(𝑠, 𝑡)∕𝜕𝑡.
To close the system, we must formulate constitutive relationships that relate stresses to deformations. We assume that the rod is 

extensible but unshearable. In a growing rod, only part of the deformation results in stresses, reflecting the remodelling and growth 
of the material and the resulting change in reference configuration. To model this effect, we introduce an intermediate reference 
configuration 𝑹 (

𝑆0, 𝑡
) with arclength 𝑆(𝑆0, 𝑡), representing the equilibrium configuration of the rod achieved upon removal of the 

loads. We decompose the total deformation multiplicatively, in terms of the elastic, and growth stretches, respectively 𝛼 ∶= 𝜕𝑠∕𝜕𝑆
and 𝛾 ∶= 𝜕𝑆∕𝜕𝑆0 (Goriely, 2017): 

𝜆 = 𝛼𝛾 (38)

(see Fig.  5). Constitutively, we assume that only 𝛼 and 𝑘 generate stresses. Therefore, we posit a quadratic elastic energy density 
(energy per unit intermediate length) for a morphoelastic rod with intrinsic curvature 𝑘̂, of the form 

𝑊 (𝛼, 𝑘) = 1
2
 (𝛼 − 1)2 + 1

2
(𝑘 − 𝑘̂)2, (39)

where  and  are the extensional and bending stiffnesses, respectively. The corresponding constitutive relations are 

𝑛 = 𝜕𝑊 =  (𝛼 − 1) , (40a)

𝜕𝛼
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𝑚 = 𝜕𝑊
𝜕𝑘

= (𝑘 − 𝑘̂), (40b)

with 𝑛 ∶= 𝒏 · 𝝉 = 𝑛𝑥 cos 𝜃 + 𝑛𝑦 sin 𝜃, the longitudinal tension.
There are two remaining important components to model, the growth of the axonal shaft specified by 𝛾, and the remodelling 

of the curvature 𝑘̂. Physically, growth is due to mechanical stresses along the shaft that cause the axon to creep irreversibly above 
some critical tension (Franze and Guck, 2010; Suter and Miller, 2011; Goriely et al., 2015), while new cytoplasmic material is 
incorporated simultaneously into the shaft (O’Toole and Miller, 2011). During this process, cross-sectional area remains mostly 
constant, indicating that the cell maintains a homoeostatic density (Dennerll et al., 1989; Lamoureux et al., 1989); thus we assume 
that  and  are constant in time and uniform along the rod. To model diffuse growth at each point, we use the exponential growth 
law (Oliveri and Goriely, 2022) 

1
𝛾
𝜕𝛾
𝜕𝑡

=

(

𝑛 − 𝑛0
)

+
𝜂

, (41)

where (𝑛 − 𝑛0
)

+ = 𝑛− 𝑛0 for 𝑛 ≥ 𝑛0 (0 otherwise); 𝑛0 ≥ 0 is the critical tension below which no growth occurs; and 𝜂 plays the role of 
a morphoelastic viscosity (in unit force times time). Henceforth, for simplicity, we neglect the threshold effect and we set 𝑛0 = 0.

We also assume a relaxation process for the bending moment due to internal remodelling by using the curvature evolution law 
̇̂𝑘 = 𝑘 − 𝑘̂

𝜏𝑘
, (42)

with a characteristic timescale 𝜏𝑘 of the same order as 𝜂∕𝑛0.
The connection to the mesoscopic model is obtained through the boundary conditions. At the base 𝑆0 = 0, the rod is clamped 

𝒓 (0) = 𝒓0, 𝜃 (0) = 𝜃0, (43)

where 𝒓0 and 𝜃0 are the base position and angle. At its tip, the rod is subject to the traction exerted by the growth cone: 

𝑚
(

𝐿0
)

= 0, 𝒏
(

𝐿0
)

= 𝑭
(

𝒓
(

𝐿0
)

, 𝜃
(

𝐿0
))

, (44)

where 𝑭  depends on the growth cone position and orientation through the mesoscopic law (31).
There are three important parameters in the problem, the dimensionless parameter  ∶= 𝜁∕𝜂, which measures the relative 

effect of adhesion w.r.t. viscosity, and the two characteristic lengths 
𝛬 =

√

𝜂∕𝜁,  =
√

∕𝐹 . (45)

The growth length 𝛬 measures the distance over which axonal tension dissipates into the substrate due to friction (O’Toole et al., 
2008; Oliveri et al., 2021; Oliveri and Goriely, 2022), and  is the bending length that measures the typical curvature radius of a 
beam due to the typical transverse traction 𝐹  from the growth cone.

At any time, given 𝛾(𝑆0, 𝑡) and 𝑘̂(𝑆0, 𝑡), the boundary-value problem formed by (35)–(38), (40) and (41) with the boundary 
conditions (43) and (44), can be solved numerically to obtain the axon’s trajectory. However, the frictional interaction between the 
axon and its substrate dissipates traction forces over a region close to the growth cone which becomes short, relatively to the entire 
axon, as time progresses. Thus, only a short and essentially constant distal section of the axon is dynamic, rapidly causing important 
computational difficulties due to our Lagrangian specification of the problem. Rather than solving for the system directly, we can 
take advantage of this effect and focus our attention on the growth process localised in a distal region, and freeze the most proximal 
part of the axon to account for permanent adhesion between the axon and the substrate (and discard that frozen region from the 
problem). This process is described in the next section.

4.2. Tip growth approximation

The existence of a characteristic lengthscale 𝛬 can be used to further simplify the problem. For axons, we have 𝛬 ≪  as the 
force applied by the growth cone only creates small deflections (hence a large radius of curvature ). This scaling has two important 
consequences.

First, the effect of the force applied at the tip of the axon by the growth cone on the rest of the axon vanishes quickly away 
from the tip. It implies that only a short zone at the tip of length 𝐿 that is of order 𝛬 is subject to a force. In terms of modelling, we 
exploit this result computationally by constraining the dynamic region of the axon to a moving active portion of fixed arclength 𝐿
while segments of the axon found at a greater arclength are fixed and do not need to be updated. In morphoelasticity, this process 
is referred as tip growth (Goriely, 2017) and is found in plant shoots or roots, which undergo elongation over an effectively finite 
apical (or sub-apical) region (Silk and Erickson, 1979).

Second, since the active zone is small w.r.t. the typical radius of curvature, only small deflections away from the natural state 
take place in response to the growth cone. The distal end of the beam – the axon’s tip – is subject to the locomotory force 𝑭  produced 
by the growth cone. The basal end makes the junction between the dynamic region and the frozen region, and is assumed to be 
clamped from the point of view of the elastic quasi-equilibrium. Therefore, we can approximate the shape of the active zone by 

𝒓(𝜎, 𝑡) = 𝒓̂ 𝑡 + 𝗑(𝜎, 𝑡) 𝝉̂(𝑡) + 𝗒(𝜎, 𝑡) 𝝂̂(𝑡), 𝜎 ∈ [0, 𝐿], (46)
( )
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Fig. 6. Schematic of the incremental axonal growth process. We assume that only a segment of length 𝐿 and clamp angle 𝜃̂ is subject to bending and remodelling. 
When a force is applied, this clamped beam element bends. Once deformed it grows by an amount 𝑐(𝑡)𝛥𝑡 and the new clamp is moved and rotated to the new 
angle 𝜃̂(𝑡).

where 𝒓̂ = (𝑥̂, 𝑦̂) and 𝝉̂(𝑡) is the position of the clamp; 𝝉̂ = cos 𝜃̂ 𝒆𝑥 + sin 𝜃̂ 𝒆𝑦 and 𝝂̂ = − sin 𝜃̂ 𝒆𝑥 + cos 𝜃̂ 𝒆𝑦 are the tangent and normal 
vectors to the curve at the base, with 𝜃̂ the angle of the clamp to the horizontal 𝒆𝑥 (henceforth, we denote quantities evaluated at 
the base of the beam with a circumflex); 𝗑 and 𝗒, typeset in the sans-serif font, denote the coordinates of the rod in the frame of the 
clamp. For small deflection we have 𝗑(𝜎, 𝑡) ≈ 𝜎, and the rod equations of the previous section simplify to the beam equations (Goriely, 
2017, p. 147).

There is however an important subtlety appearing in the problem. Since the active zone is moving in time, we have to properly 
advect the position of the beam element as the axon grows. We keep track of the position and direction of the clamp through the 
position vector ̂𝒓(𝑡) and model the evolution of 𝒓(𝜎, 𝑡) as the limit in small time step 𝛥𝑡 of the following process (Fig.  6): At 𝑡 the beam 
is clamped at 𝒓̂(𝑡) with direction 𝝉̂(𝑡) and is subject to a distal load 𝑭 (𝑡) and viscous friction along its length. First, 𝗒(𝜎, 𝑡) evolves 
according to the linear beam equations for a time interval of length 𝛥𝑡 ≪ 1. Then, a linear segment of length 𝑐(𝑡)𝛥𝑡 is added to the 
end of the beam in the direction of the tip. We call 𝑐(𝑡) the growth rate of the axon. Finally, the length constraint is enforced by 
setting the new profile of the beam, 𝒓(𝜎, 𝑡 + 𝛥𝑡) to be the segment of length 𝐿 from the tip of the grown, deflected beam profile.

Taking the limit 𝛥𝑡 → 0, we obtain the continuous-time evolution equations (see details in Appendix  A): 
𝜕𝗒
𝜕𝑡

− 𝑐(𝑡)
𝜕𝗒
𝜕𝜎

= 1
𝜁

(

𝜕2𝗒
𝜕𝜎2

𝑭 · 𝝉̂ − 
𝜕4𝗒
𝜕𝜎4

)

− 𝜎 ̂ (𝑡) , (47a)

𝜕𝜃̂
𝜕𝑡

= ̂ (𝑡) , (47b)

𝜕𝒓̂
𝜕𝑡

= 𝑐(𝑡) 𝝉̂ , (47c)

̂ (𝑡) ∶= 𝑐(𝑡)
𝜕2𝗒
𝜕𝜎2

(0, 𝑡). (47d)

The deflection 𝗒(𝜎, 𝑡) satisfies the boundary conditions 

𝗒(0, 𝑡) = 0,
𝜕𝗒
𝜕𝜎

(0, 𝑡) = 0, (48a)

𝜕2𝗒
𝜕𝜎2

(𝐿, 𝑡) = 0, 
𝜕3𝗒
𝜕𝜎3

(𝐿, 𝑡) − 𝑭 · 𝝉̂
𝜕𝗒
𝜕𝜎

(𝐿, 𝑡) = −𝑭 · 𝝂̂. (48b)

Conditions (48a) define a clamp at 𝜎 = 0, while (48b) enforces the load 𝑭  applied with no torque on the beam at 𝜎 = 𝐿.
The growth speed 𝑐 depends on the force exerted by the growth cone on the tip of the axon. Solving the system in the steady 

regime for rectilinear expansion (see O’Toole et al., 2008; Oliveri et al., 2021; Oliveri and Goriely, 2022), provides, for small 
deflection and to leading order, a growth velocity of the form 

𝑐 = 𝑭 · 𝒕
√

. (49)

𝜂𝜁
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Fig. 7. Simulations of axons refracting across and reflecting against an interface with incidence angle 𝜃1 and reflection or refraction angle 𝜃2. (a) When the 
traction exerted by the growth cone is smaller on the right substrate (here 𝛼𝑇 = 5∕4), the axon can only refract. (b) When the traction exerted by the growth 
cone is larger on the right substrate (here 𝛼𝑇 = 4∕5), the axon can reflect or refract depending on the incidence angle. Parameters in both scenarios: 𝜆 = 𝑅∕4, 
𝑅 = 𝐿∕2, 𝜑0 = 𝜋∕2, 𝛽 = 0.05.

We have developed a minimal model with two main components. From the microscopic model we have a mapping from substrate 
rigidity to the traction exerted by the growth cone, and from the mesoscopic model we obtain the shape of the axon as a function 
of time by locally integrating a clamped beam equation and advecting the clamp accordingly (our numerical method is described 
in Appendix  B). We are now in a position to use this model to understand the effects of varying substrate rigidity on the motion 
and shape of axons.

5. Axonal optics: reflection, refraction and focalisation of axons

In this section, we explore canonical properties of our theory emerging from the interaction between the axon and a substrate 
with heterogeneous rigidity. More specifically, we examine two key cases: a straight interface between two regions of uniform 
stiffness; and a graded field of stiffness defined by a uniform gradient. The question then is to identify the essential laws that govern 
the motion of an axon within such fields.

5.1. Reflection and refraction at a straight stiffness interface

We consider a heterogeneous field composed of two regions with different but uniform stiffnesses separated by a straight 
interface. In this case, the axon can either grow through the interface (refraction) or bounce against the interface (reflection), 
in analogy with optic ray theory (Oliveri et al., 2021). As the growth cone touches the interface, the force density along the growth 
cone margin becomes heterogeneous.

We assume that the axon grows from the region 𝑥 < 0, as shown in Fig.  7(a), and approaches the boundary with an angle of 
incidence 𝜃1 ∈ [0, 𝜋∕2) (the angle between the axon and the normal to the interface). We assume that the interface is sharp but 
numerically, we approximate this straight interface by 

𝑇 (𝑥, 𝑦) =
𝑇1 + 𝑇2

2
+
𝑇2 − 𝑇1

2
tanh (𝑥∕𝜆) , (50)

where 𝑇1 = 𝑇
(

𝜒1
) and 𝑇2 = 𝑇

(

𝜒2
) are the force densities produced by the growth cone in the left-most and right-most regions, 

which depend on the stiffness of each region (𝜒1, 𝜒2). The parameter 𝜆 determines the length scale of the transition from 𝑇1 to 𝑇2
across the interface and is chosen small enough w.r.t. the growth cone size, such that further reduction does not affect the results. 
(in practice, we found that 𝜆 = 𝑅∕4 is suitable). The total force depends nonlinearly on the position and orientation of the growth 
cone via (30), since, here, the large steepness of the gradient ∼ (𝑇2 − 𝑇1)∕2𝜆 precludes the use of the leading-order approximation 
(31).

Initially, we assume a clamp position 𝒓0 (0) far from the interface in the incidence direction 𝜃1. After the growth cone crosses the 
interface region, it follows a straight trajectory which defines the refraction angle 𝜃2 w.r.t. the normal pointing into the right region. 
The axon may also reflect against the interface and stay in the left-most region as seen in Fig.  7(b). In this case, the reflection angle
𝜃2 is defined as the angle between the left normal and the direction of the axon. Let 𝜃m = lim𝑡→∞ 𝜃0 (𝑡) mod 2𝜋, then restricting our 
attention to 𝜃m ∈ [0, 𝜋) we have 

𝜃2 =

{

𝜃m, if 0 ≤ 𝜃m < 𝜋∕2,
(51)
𝜋 − 𝜃m, if 𝜋∕2 ≤ 𝜃m < 𝜋.
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Fig. 8. Demonstration of the absence of time-reversibility in the system. Approaching the interface from the left is not the same as approaching from the right. 
An axon travelling from blue to white with an angle w.r.t the vertical 𝜃1 ends with an angle 𝜃2. The same axon travelling from white to blue with an angle 𝜃2
will end with in a direction given by 𝜃1 ≠ 𝜃1. Parameters: 𝑅 = 𝐿∕2, 𝜆 = 𝑅∕4, 𝜑0 = 𝜋∕2, 𝛼𝑇 = 4∕5, 𝛽 = 0.05.

By choosing the characteristic force-scale of the system to be 2𝑅𝜌𝑇1 sin𝜑0, which is equal to the magnitude of the total growth 
cone force when 𝜒 = 𝜒1, we obtain the two dimensionless parameters 

𝛼𝑇 ∶=
𝑇2
𝑇1
, 𝛽 ∶=

 csc𝜑0

2𝑅𝜌𝑇1𝐿2
. (52)

In particular, 𝛽 relates to the typical radius of curvature of the axon, that is, smaller 𝛽 generates larger deflections. A physiological 
range can be estimated for the value of 𝛽. The bending stiffness of the axon, , is estimated to be between 5 × 10−22 N m2 and 
6 × 10−19 N m2 (Lang et al., 2017). The growth cones of axons of different types of neurons can generate net traction forces of 
varying magnitudes. These traction forces, equal to 2𝑅𝜌𝑇1 sin𝜑0, can range from 0.1 nN to 2 nN (Koch et al., 2012). Finally, the 
length of the beam, 𝐿, is on the order of 𝛬 =

√

𝜂∕𝜁 . We assume that 𝐿 = 𝛬 and estimate 𝛬 ≈ 32 μm using the estimates 𝜂 ≈ 10−5

Ns, 𝜁 ≈ 104 Pa.s from O’Toole et al. (2008). Combining all of these estimates together, we conclude that 10−5 ≤ 𝛽 ≤ 101. For our 
simulations, we chose the intermediate value of 𝛽 = 0.05. Further, we must determine the value of the growth cone radius, 𝑅. 
Growth cone protrusions can extend between 5 μm and 10.5 μm from the axon shaft (Koch et al., 2012), where the shaft and the 
growth cone meet. For simplicity, we chose a growth cone radius of 𝑅 = 𝐿∕2 ≈ 16 μm, which corresponds to a relatively large 
growth cone. 

We distinguish the two cases 𝛼𝑇 > 1 and 𝛼𝑇 < 1. When 𝛼𝑇 > 1 – see Fig.  7(a) – the durotactic force in the right region is 
greater than in the left region, thus the durotactic force component tends to pull the axon towards the right region. This results in 
a refractive behaviour with 𝜃2 smaller than 𝜃1. Conversely, when 𝛼𝑇 < 1, both refraction and reflection can be observed, as shown 
in Fig.  7(b).

At a superficial level, these observations are reminiscent of the refractive and reflective behaviours of light rays crossing a sharp-
interface between two regions of different refractive indices. However, due to the finite size of the growth cone, the interaction with 
the interface is more complex and there is no simple quantitative analogy with Snell’s law. Further, a fundamental difference between 
this model and geometric optics is that we do not have time-reversibility in our system. In optics, the time-reversal symmetry of 
Maxwell’s equations implies that reflection occurs with 𝜃1 = 𝜃2. As can be seen in Figs.  7 and 8, this symmetry does not exist in our 
model, and in particular, we observe that 𝜃1 ≠ 𝜃2 after reflection. In fact, when reflected, axons remain much more parallel to the 
interface than light rays do.

5.2. A simple stiffness gradient

Next we examine the case of an axon growing on a substrate with a graded stiffness of the form 
𝜒 (𝑥, 𝑦) = 𝑚𝜒𝑦 + 𝜒∗, (53)

where the parameter 𝑚𝜒  is the stiffness gradient.
Firstly, as a simple illustration of growth on a graded substrate, we initiate multiple axons on the boundary of a disk in a linearly 

increasing stiffness field, mimicking the experimental setup in Koser et al. (2016). The growth pattern obtained matches qualitatively 
that seen experimentally; see Fig.  9, where axons are gradually deflected towards stiffer regions (upper parts of the domain).

More in general, the local traction exerted by the growth cone exhibits a maximum on the line  of optimal stiffness 𝑦 = 0. We 
will show that  is a locally attracting set for our system in the sense that nearby trajectories are attracted asymptotically to . 
This property is a consequence of the non-monotonic dependence of the traction force 𝑇  upon the stiffness 𝜒 .
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Fig. 9. (Left) Axons growing from a xenopus retina, cultured on a substrate with a linear stiffness gradient. As can be seen, the axons tend to grow more towards 
the soft side of the substrate (after Koser et al., 2016). (Right) Simulation of the rod model, with axons initialised on the boundary of a disc, in the stiffness 
field (53), showing qualitatively similar growth pattern. 𝑚𝜒 = −0.1, 𝐿 = 32 μm,  = 10−19 N m2, 𝑅 = 𝐿∕2, 𝜑0 = 𝜋∕2, 𝜉 = 𝑓0𝐾, 𝑀 = 7.5𝑓0𝐾, 𝐾 = 1∕

(

𝑟∗e𝑟∗𝛤 (0, 𝑟∗)
)

and 2𝜌𝑅𝑓0𝐾 (𝑟∗) = 10−9 N.

We consider an axon travelling in a neighbourhood of  with a typical width of order 𝑅, the radius of the growth cone. Hence, 
the growth cone is initially located at the position 𝒓 = 𝑟𝑅𝒆𝑦, with 𝑟 of order one, and travelling nearly parallel to the axis with 
𝒕 = 𝒆𝑥 + 𝜓𝒆𝑦 +…  with the growth cone angle 𝜓 ≪ 1. We obtain the behaviour of this axon by expanding the traction (30) about 
𝜒∗, while treating 𝑅 and 𝜓 as small parameters:

𝜌−1𝑭 (𝒓, 𝒕) = 2𝑅 sin𝜑0𝑇 (𝜒∗)𝒕 + 𝑟2𝑅3 sin𝜑0𝑇
′′ (𝜒∗)𝑚2

𝜒 𝒕 + 𝑟𝑅
3𝜑0𝑇

′′(𝜒∗)𝑚𝜒𝐏(𝜑0)∇𝜒

+
𝑅3𝜑0
2

𝑇 ′′(𝜒∗)P
(

𝜑0
)

∶ ∇𝜒 ⊗ ∇𝜒 + 𝑂(𝑅4), (54)

where P (

𝜑0
)

∶= ∫ 𝜑0−𝜑0
𝒆𝝋 ⊗ 𝒆𝝋 ⊗ 𝒆𝝋

(

d𝜑∕𝜑0
)

, and 𝐏 (

𝜑0
) is defined in (32). Eq. (54) extends (31) to higher order. This is necessary 

for our analysis, since the leading-order deflection of 𝑂(𝑅2) vanishes at 𝜒 = 𝜒∗. Of particular interest is the transverse component 
𝐹𝑛 ∶= 𝑭 ·𝒏, given by 

𝐹𝑛 =
1
6
𝑅3𝜌𝑇 ′′(𝜒∗)𝑚2

𝜒
(

3𝑟
(

𝜑0 − sin𝜑0 cos𝜑0
)

+ 4𝜓 sin3 𝜑0
)

+ h.o.t. (55)

Since 𝐹𝑛 = 0 when 𝜓 = 𝑟 = 0, there exist trajectories along  (however, with a small drift appearing at higher orders and controlled 
by the third derivative 𝑇 ′′′(𝜒∗)). For 𝑟 ≫ 𝜓 , the first term in the parentheses dominates, and, since 𝑇 ′′ (𝜒∗) < 0, the deflection 
component has opposite sign of 𝑟 and grows with 𝑟 in magnitude. Thus we interpret this term as an elastic-like restoring force 
which pulls the axon back to the optimal stiffness line . Conversely, very close to , i.e. for 𝑟 ≪ 𝜓 , the deflection is dominated 
by the second term and takes now the opposite sign of 𝜓 , which, again, will tend to reorient the axon towards the horizontal. We 
conclude that, close to the line of optimal stiffness, durotaxis has a restoring, stabilising effect which tends to maintain the axon 
near this line.

Note, however, that the longitudinal component 𝐹𝑡 ∶= 𝑭 · 𝒕 ≫ 𝐹𝑛 dominates in the balance of forces, thus there may exist, in 
principle, conditions for which durotaxis will not suffice to keep the axon in the vicinity of . Furthermore, it cannot be directly 
concluded whether the stable trajectory is attracting (exponential stability), or whether axons will oscillate around it and repeatedly 
overshoot it.

To further explore the dynamics of the axon near , we perform numerical simulations shown in Fig.  10. Firstly, Fig.  10(a) 
illustrates that, in the vicinity of  and for small initial inclination, axons are attracted and converge towards this stable manifold. 
Second, Fig.  10(b) shows that there may exist an escape angle above which durotaxis is insufficient to keep the axon closer to 
despite the negative durotaxis in that region. Clearly, if the axon crosses perpendicularly the line of optimal stiffness, it will not 
curve back. Whether nearby directions also escape in an infinite domain is neither easy to establish nor directly relevant to the 
problem. Indeed, in a much larger domain, it is possible that such trajectories curve back to the line of optimal stiffness. However, 
in a realistic scenario, such axons would have migrated away from the region of optimal stiffness and be subject to other stimuli.

In conclusion these examples illustrate that, even for a simple uniform gradient, the non-monotonic, nonlinear dependence of 
the locomotory force upon stiffness implies the existence of preferential regions where axons are expected to converge. Such a 
mechanism may be key to understanding neuronal focalisation towards regions of specific stiffness.
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Fig. 10. (a) Axons trajectories converge to the line of optimal stiffness, , if sufficiently close to it with sufficiently small inclination. (b) Axons with sufficiently 
large inclination escape the vicinity of .

6. Biological applications

Taken together, these findings highlight two primary modes of guidance: deflective guidance (via reflection and refraction) and 
attractive guidance (via emergent attraction to regions of optimal stiffness). Lastly, we illustrate the potential role of these guidance 
modes in a biological scenario.

During early neurodevelopment, xenopus retinal ganglion cells (RGCs) establish connections with the brain as their axons 
exit the retina through the optic nerve and migrate towards the brain (Koser et al., 2016; Thompson et al., 2019). These axons 
grow collectively, cross the midline at the optic chiasm, and then travel along the contralateral brain surface towards the optic 
tectum, where they terminate. Towards the end of this journey, a postero-anterior gradient in brain tissue rigidity emerges, which 
strongly correlates with the stereotypical caudal turn observed in RGC axons as they traverse the mid-diencephalon en route to the 
tectum (Koser et al., 2016).

Oliveri et al. (2021) investigated the influence of this stiffness gradient on the deflection of an entire bundle of axons, under the 
assumption that the axons are mechanically coupled. In their model, differential stiffness sensing generates a velocity differential 
across the bundle’s leading front, which explains its coordinated deflection. However, in biological systems, the mechanical coupling 
between axons is mediated by cell–cell adhesion, which is highly regulated and may be more or less loose (Šmít et al., 2017).

In this study, we address the problem from the opposite perspective by assuming the absence of mechanical coupling between 
axons in the bundle, which is compatible with a scenario where axons follow a leader cell (Hentschel and Van Ooyen, 1999). Using 
our model, we focus on the trajectories of individual axons, offering a complementary understanding of the role of stiffness gradients 
in axonal guidance.

To study the trajectory of single axons in the optic tract we use a brain rigidity field, 𝐸 (𝑥, 𝑦) with unit of pressure, obtained 
by atomic force microscopy (Thompson et al., 2019; Oliveri et al., 2021). We investigate the trajectories of axons growing on a 
substrate with stiffness field 𝜒 (𝑥, 𝑦) = 𝐸 (𝑥, 𝑦) ∕𝐸𝑐 , where 𝐸𝑐 is a characteristic stiffness. We simulated 𝑁 = 100 axons, varying their 
initial position and direction around the entry point of the domain. The target zone (optic tectum) was defined as the quadrant seen 
in Fig.  11(c) and for each set of parameters we record the success rate 𝑁𝑠∕𝑁 , characterising the ratio of axons successfully reaching 
the target (with number 𝑁𝑠) to the total number 𝑁 .

In previous sections, we showed that the key features of the traction-stiffness curve 𝑇 (𝜒) relating to axon guidance are 𝜒∗, 
𝑇 ′′ (𝜒∗), and 𝑇∞. These features can be directly controlled through myosin contractility 𝑀 (see Section 2.3) which can be targetted 
through pharmacological treatments in experiments such as application of the myosin inhibitor blebbistatin (Kovács et al., 2004), 
or by modulating the number of myosin molecules; or via the clutch properties (Bangasser et al., 2013, 2017).

Here we investigated the effect of myosin contractility on the success rate and found that success rate is a non-monotonic function 
of 𝑀 . The analysis of the success rate as a function of contractility allows us to identify four regimes depending on 𝑀 , where the 
success rate is in turn decreasing, constant, increasing and decreasing again; see Fig.  11(a).

We can understand this non-monotonic behaviour by looking at the resulting traction field 𝑇 (

𝐸 (𝑥, 𝑦) ∕𝐸𝑐
) in the four different 

regimes. We investigate a representative case from each regime; (i)–(iv) in Fig.  11(a). In the domain, the rigidity ranges from 57 Pa to 
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Fig. 11. (a) Success rate as a function of 𝑀 . (b) Traction as a function of 𝐸 for the values of 𝑀 indicated in (a). (c) Density map of traction for the values 
of 𝑀 indicated in (a) overlaid with representative trajectories of axons for the given parameters. 𝐿 = 32 μm,  = 10−19 N m2, 𝑅 = 𝐿∕2, 𝜑0 = 𝜋∕2, 𝜉 = 𝑓0𝐾, 
𝐾 = 1∕2, 2𝜌𝑅𝑓0𝐾 (𝑟)∗ = 10−9 N, 𝑇𝑐 = 𝑓0𝐾 (𝑟)∗ and 𝐸𝑐 = 6 kPa.

250 Pa. For 𝑀∕𝑓0𝐾 = 10, the optimal stiffness is greater than 250 Pa. Therefore, traction is an increasing function of rigidity between 
57 Pa and 250 Pa; see (i) in Fig.  11(b). Since the left side of the domain is stiffer than the right side, the traction 𝑇 (

𝐸 (𝑥, 𝑦) ∕𝐸𝑐
)

smoothly increases from right to left. As a result, axons undergo positive durotaxis and are attracted to the left side of the domain 
leading to a poor success rate of 21%.

As 𝑀∕𝑓0𝐾 increases further, the optimal stiffness decreases and enters the range of stiffness values present in the domain; see 
(ii) and (iii) in Fig.  11(b). As a result, contours of optimal stiffness form within the domain and axons tend to follow them. In the 
case of 𝑀∕𝑓0𝐾 = 35, one of these contours leads most of the axons away from the target leading to a catastrophic success rate of 
0%; see Fig.  11(c), (ii).

For greater values of 𝑀∕𝑓0𝐾, with the optimal stiffness decreasing further and the decay of 𝑇
(

𝐸∕𝐸𝑐
) to 𝑇∞ becoming faster, 

the domain becomes roughly bisected by an interface with a region of high traction on the right side of the domain and a region of 
low traction on the left side of the domain. This situation is similar to the example studied in Section 5.1 where axons can reflect 
against a sharp interface between regions of different rigidities. Indeed, we see that for 𝑀∕𝑓0𝐾 = 50, most axons reflect against 
a well-formed interface between the two regions of low and high traction, and reach the target; see Fig.  11(c), (iii). Because the 
interface is not perfectly straight, many axons that are not initially reflected by their interaction with the interface, re-approach 
the interface later on. In this case, the axons are refracted into the region of high traction and subsequently reach the target. This 
combination of reflection and refraction results in the high success rate of 89%. For 𝑀∕𝑓0𝐾 > 50, a combination of reflection and 
refraction again results in high success rate. However, the placement of the interface is less favourable and fewer axons reach the 
target; see Fig.  11(c), (iv).

These simulations suggest that durotaxis may play a role in guiding the optic tract to the tectum. However, obtaining accurate 
parameter estimates remains a significant challenge, making it difficult to draw definitive conclusions about the precise role of 
durotaxis in this process. Additionally, collective effects and chemotaxis are well-established as dominant mechanisms in optic tract 
guidance.
16 



C. Kassianides et al. Journal of the Mechanics and Physics of Solids 200 (2025) 106134 
Nonetheless, the results illustrate how paradigms such as reflection, refraction, and the tracking of lines of optimal stiffness can, in 
principle, guide axons in biologically realistic scenarios. Furthermore, the findings underscore the critical role of the traction stiffness 
curve 𝑇 (𝜒) in controlling the dynamics. As emphasised in this paper, axonal trajectories in durotaxis are dictated by the stiffness 
field and the three key properties of the traction stiffness curve: 𝜒∗, 𝑇 ′′ (𝜒∗), and 𝑇∞. The choice of these properties (e.g. via the 
parameter 𝑀) control the outcomes. Our results suggest that, under the proposed model of durotaxis, the most plausible mechanism 
for guiding axons to the optic tract involves a combination of reflection and refraction, rather than following lines of optimal stiffness.

7. Discussion

Axons are examples of active structures that process multiple and complex stimuli and dynamically adapt their growth to these 
stimuli, a process similar to tropic phenomena in plants (Moulton et al., 2020) or the response of soft liquid crystal elastomer 
rods (Goriely et al., 2023). The problem is then to model the evolution, growth, deformation, and motion of such a structure.

Here we adopted a multiscale approach to model the migration of an axon, combining (i) the molecular interaction between an 
axon and its substrate; (ii) the integration of such interactions over the growth cone to obtain the forces acting at the tip of the 
axon; (iii) modelling the growing axon as a morphoelastic rod in response to both stimuli and interaction with its environment; and 
(iv) simplifying this model for computational purposes based on the fact that growth takes place close the growth cone.

In contrast with many models for axon guidance based on Brownian-type dynamics (see Maskery and Shinbrot, 2005; Oliveri 
and Goriely, 2022, and references therein), growth is modelled explicitly, as well as the mechanics of axonal shaft bending and 
elongation, and the mechanics of cell adhesion underlying locomotion. The primary challenge in constructing a mechanistic model 
of axonal guidance lies in simultaneously accounting for axonal mechanics, growth cone mechanics, and actomyosin dynamics. To 
address this problem, we adopt a multiscale, mean-field framework. Following Chan and Odde (2008) and Sens (2013), we begin by 
modelling the fundamental interaction between a single actin filament and the substrate. This local interaction law is then employed 
in a second step to derive the total force exerted across the growth cone.

Crucially, we do not model explicitly the entire actin–myosin lamellipodium by taking into account each individual actin filament, 
but, instead, we derive a minimal expression for the growth cone traction in a shallow stiffness gradient. This approach contrasts 
with models such as Aeschlimann (2000), where individual filaments are represented explicitly in a computational framework. By 
integrating this growth cone force with a reduced beam model, which accounts for the gradual fixation of the axon to its substrate 
and incorporates a finite distal growth zone, we obtain a simple tractable model that can be easily implemented.

This approach reveals key guiding principles of durotaxis. First, the mechanical interaction between the axon and the substrate, 
governed by Bell-type adhesion kinetics, produces a highly nonlinear and potentially non-monotonic dependence of the force 𝑇
generated by an actin filament on substrate stiffness. Such previously-identified non-monotonicity (Chan and Odde, 2008; Sens, 
2013; Bangasser and Odde, 2013) arises from a phenomenon known as stick–slip instability, where excessive stiffness leads to rapid 
breakage of cross-linkers, reducing the generated force compared to more moderate stiffness levels. Critically, this non-monotonic 
behaviour of 𝑇  is essential for explaining the coexistence of positive and negative durotactic regimes, which can arise without the 
need for separate cellular mechanisms.

At the cellular scale, this behaviour implies the existence of stable, attractive regions with optimal stiffness where axons are likely 
to converge due to enhanced adhesion. Notably, the idea that a simple stiffness gradient can create distinct regions via nonlinear 
cellular sensing strongly parallels patterning mechanisms such as Wolpert’s French flag model (Wolpert, 2008). This analogy may 
hold particular significance for understanding mechanically induced neuronal segmentation, as observed by Schaeffer et al. (2022).

Second, inspired by the analogy proposed by Oliveri et al. (2021), we demonstrate that axons encountering a straight stiffness 
interface may exhibit behaviours analogous to optical refraction or reflection, depending on the incidence angle and mechanical 
conditions. This observation raises the intriguing possibility of interpreting durotactic guidance through mechanisms analogous to 
optical lensing or channelling, albeit governed by laws distinct from Snell’s law. This opens an exciting avenue for future research 
to uncover the broader principles of ‘‘axonal optics’’ that emerge from this model.

Axonal growth is a highly complex cellular process, influenced by numerous interdependent signals and growth conditions, and 
is inherently noisy. In such a context, the prospect of establishing simple, universal laws that capture the detailed intricacies of 
axonal guidance may appear unattainable. Nevertheless, by employing a minimal set of assumptions grounded in first principles 
and biological observations, we uncovered fundamental qualitative principles that govern durotaxis.

Our multiscale framework is a general theory that integrates microscale interactions between axons and substrate with macroscale 
motion. It is presented here in the simplest setting and, as such, is not designed to replicate particular experiments in details. Yet, 
achieving more quantitative applications is possible but will require extending the model to account for additional factors, such 
as chemotactic influences—particularly the poorly understood interplay between chemotactic sensitivity and mechanics (Franze, 
2020); steric interactions with other cells; the mechanical characteristics and particularities of different substrates in both two and 
three dimensions (Santos et al., 2020); more intricate axonal behaviours, such as contraction and collapse (Recho et al., 2016); 
stochastic effects; domain curvature and its influence on cell growth (Smeal et al., 2005); and collective chemical and mechanical 
phenomena (De Gennes, 2007; Hentschel and Van Ooyen, 1999; Chaudhuri et al., 2011).

Despite these phenomenological limitations, the proposed model provides a foundational framework and a key step towards a 
comprehensive, multiscale and multiphysics field theory of axonal development that can be scaled up to the entire brain.
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Appendix A. Derivation of the beam model

Here we derive the evolution laws for the dynamic section modelled by an inextensible growing beam (Section 4.2). The dynamic 
distal section of the axon is represented by a spatial curve 𝒓(𝜎, 𝑡) given as 

𝒓(𝜎, 𝑡) = 𝒓̂ (𝑡) + 𝗑(𝜎, 𝑡) 𝝉̂(𝑡) + 𝗒(𝜎, 𝑡) 𝝂̂(𝑡) (56)

Here, 𝜎 ∈ [0, 𝐿] measures the arclength from the base of the dynamic section; and where ̂𝒓, 𝝉̂ and 𝝂̂ indicate respectively the position, 
and the tangent and normal vectors to the curve at 𝜎 = 0. The coordinates 𝗑 and 𝗒 indicate the position of the curve in the local 
frame {𝝉̂ , 𝝂̂}. These definitions imply the boundary conditions 

𝗑 (0, 𝑡) = 𝗒 (0, 𝑡) = 0, 𝜕𝗑
𝜕𝜎

(0, 𝑡) = 1,
𝜕𝗒
𝜕𝜎

(0, 𝑡) = 0. (57)

Further, 𝗑, 𝗒 can be obtained by integrating the system 
𝜕𝗑
𝜕𝜎

= cos 𝜃,
𝜕𝗒
𝜕𝜎

= sin 𝜃, (58)

where 𝜃 (𝜎, 𝑡) indicates the polar angle of the tangent 𝜕𝒓∕𝜕𝜎 at arclength 𝜎 and time 𝑡, in the local frame {𝝉̂ , 𝝂̂}. That is, 
𝜕𝒓
𝜕𝜎

= cos 𝜃 𝝉̂ + sin 𝜃 𝝂̂. (59)

During a small time increment 𝛥𝑇  we update the shape of the axon by first evolving the curve according to the over-damped 
beam equations (61), assuming that the axon is clamped at 𝒓̂ (𝑡) with angle 𝜃̂ (𝑡), and subject to the force 𝑭 (𝑡) applied at 𝜎 = 𝐿 with 
zero torque. We introduce the auxiliary function 

𝒓̃ (𝜎, 𝑇 , 𝑡) = 𝒓̂ (𝑡) + 𝗑̃ (𝜎, 𝑇 , 𝑡) 𝝉̂ + 𝗒̃ (𝜎, 𝑇 , 𝑡) 𝝂̂. (60)

Here, ̃𝒓 (𝜎, 𝑇 , 𝑡) describes the evolution of the axon profile, in time 𝑇 , with initial condition 𝒓 (𝜎, 𝑡) and clamp angle 𝜃̂ (𝑡), subjected to 
constant force 𝑭 (𝑡). The functions 𝗑̃ (𝜎, 𝑇 , 𝑡) and 𝗒̃ (𝜎, 𝑇 , 𝑡) satisfy the over-damped beam equations in the frame {𝝉̂ , 𝝂̂}, with spatial 
variable 𝜎 and time variable 𝑇 . 

 𝜕
2𝜃
𝜕𝜎2

+ 𝗇̃𝑦 cos 𝜃 − 𝗇̃𝑥 sin 𝜃 = 0, (61a)

𝜕𝗇̃𝑥
𝜕𝜎

= 𝜁 𝜕𝗑̃
𝜕𝑇

,
𝜕𝗇̃𝑦
𝜕𝜎

= 𝜁
𝜕𝗒̃
𝜕𝑇

, (61b)

𝜕𝗑̃
𝜕𝜎

= cos 𝜃,
𝜕𝗒̃
𝜕𝜎

= sin 𝜃, (61c)

where 𝗇̃𝑥 and 𝗇̃𝑦 are the components of the internal resultant force ñ = 𝗇̃𝑥𝝉̂ + 𝗇̃𝑦𝝂̂ at time 𝑇 . We enforce the boundary and initial 
conditions 

𝗇̃𝑥 (𝐿, 𝑇 , 𝑡) = 𝑭 (𝑡) · 𝝉̂(𝑡), 𝗇̃𝑦 (𝐿, 𝑇 , 𝑡) = 𝑭 (𝑡) · 𝝂̂(𝑡), (62a)

𝜃 (0, 𝑇 , 𝑡) = 0, 𝜕𝜃
𝜕𝜎

(𝐿, 𝑇 , 𝑡) = 0, (62b)

𝗑̃ 0, 𝑇 , 𝑡 = 0, 𝗒̃ 0, 𝑇 , 𝑡 = 0, (62c)
( ) ( )
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𝗑̃ (𝜎, 0, 𝑡) = 𝗑 (𝜎, 𝑡) , 𝗒̃ (𝜎, 0, 𝑡) = 𝗒 (𝜎, 𝑡) . (62d)

From here, we can update the axon’s shape according to (61) integrated over a small time increment 𝛥𝑇 . That is, we define an 
intermediate curve 

𝒓̃inter (𝜎) = 𝒓̃ (𝜎, 𝛥𝑇 , 𝑡) . (63)

The updated axon after growth is then obtained by advancing the clamp position along this intermediate profile by a small length 
𝛥𝜎 = 𝑐 (𝑡)𝛥𝑇 , 

𝒓 (𝜎, 𝑡 + 𝛥𝑇 ) = 𝒓̃inter (𝜎 + 𝛥𝜎) . (64)

Expanding the r.h.s. to second order in 𝛥𝑇 , rearranging the terms and taking the limit 𝛥𝑇 → 0, we obtain
𝜕𝒓
𝜕𝑡

(𝜎, 𝑡) =
(

𝑐(𝑡) 𝜕𝗑̃
𝜕𝜎

(𝜎, 0, 𝑡) + 𝜕𝗑̃
𝜕𝑇

(𝜎, 0, 𝑡)
)

𝝉̂

+
(

𝑐(𝑡)
𝜕𝗒̃
𝜕𝜎

(𝜎, 0, 𝑡) +
𝜕𝗒̃
𝜕𝑇

(𝜎, 0, 𝑡)
)

𝝂̂. (65)

Differentiating (56) we derive 
𝜕𝒓
𝜕𝑡

(𝜎, 𝑡) = d𝒓̂
d𝑡

+
(

𝜕𝗑
𝜕𝑡

− 𝗒
d𝜃̂
d𝑡

)

𝝉̂ +
(

𝜕𝗒
𝜕𝑡

+ 𝗑
𝜕𝜃̂
𝜕𝑡

)

𝝂̂, (66)

where 𝜃̂ is the angle between 𝝉̂ and the horizontal direction. Equating the r.h.s. of (65) and (66) we obtain 
𝜕𝗑
𝜕𝑡

− 𝗒
d𝜃̂
d𝑡

+ 𝜕𝒓̂
𝜕𝑡

· 𝝉̂ = 𝑐(𝑡) 𝜕𝗑̃
𝜕𝜎

(𝜎, 0, 𝑡) + 𝜕𝗑̃
𝜕𝑇

(𝜎, 0, 𝑡) , (67a)

𝜕𝗒
𝜕𝑡

+ 𝗑
d𝜃̂
d𝑡

+ 𝜕𝒓̂
𝜕𝑡

· 𝝂̂ = 𝑐(𝑡)
𝜕𝗒̃
𝜕𝜎

(𝜎, 0, 𝑡) +
𝜕𝗒̃
𝜕𝑇

(𝜎, 0, 𝑡) . (67b)

To obtain the evolution equation for 𝒓̂ we set 𝜎 = 0 in the above equations. We note that, due to (57), we have 𝜕𝗑∕𝜕𝑡 (0, 𝑡) =
𝜕𝗒∕𝜕𝑡 (0, 𝑡) = 0 and so 

𝜕𝒓̂
𝜕𝑡

= 𝑐(𝑡)𝝉̂ (68)

We derive the evolution equation for 𝜃̂ by imposing (to first order in 𝛥𝑇 ) that 
𝜕𝒓
𝜕𝜎

(0, 𝑡 + 𝛥𝑇 ) = 𝜕𝒓
𝜕𝜎

(𝑐(𝑡)𝛥𝑇 , 𝑡) . (69)

Expanding the l.h.s. in 𝑡 and the r.h.s. in 𝜎 to second order in 𝛥𝑇 , rearranging and taking the limit 𝛥𝑇 → 0 gives 
d
d𝑡

( 𝜕𝒓
𝜕𝜎

(0, 𝑡)
)

= 𝑐(𝑡) 𝜕
2𝒓
𝜕𝜎2

(0, 𝑡) , (70)

which simplifies to 
𝜕2𝗑
𝜕𝜎2

(0, 𝑡) = 0, (71a)

d𝜃̂
d𝑡

= 𝑐(𝑡)
𝜕2𝗒
𝜕𝜎2

(0, 𝑡) . (71b)

Therefore the governing equations become 
𝜕𝗑
𝜕𝑡

− 𝗒𝑐(𝑡)
𝜕2𝗒
𝜕𝜎2

(0, 𝑡) + 𝑐(𝑡) = 𝑐(𝑡) 𝜕𝗑̃
𝜕𝜎

(𝜎, 0, 𝑡) + 𝜕𝗑̃
𝜕𝑇

(𝜎, 0, 𝑡) , (72a)

𝜕𝗒
𝜕𝑡

+ 𝗑𝑐(𝑡)
𝜕2𝗒
𝜕𝜎2

(0, 𝑡) = 𝑐(𝑡)
𝜕𝗒̃
𝜕𝜎

(𝜎, 0, 𝑡) +
𝜕𝗒̃
𝜕𝑇

(𝜎, 0, 𝑡) . (72b)

Next, we assume that the normal component of the force 𝑭  w.r.t. the clamp axis is small. That is, 
𝑭 · 𝝂̂ = 𝜖𝑁𝑦, (73)

for 𝜖 ≪ 1 and where 𝑭 · 𝝉̂ and 𝑁𝑦 are 𝑂(1). Consequently, the axon is subject to small deflections from the axis spanned by 𝝉̂. i.e. 

𝗑 = 𝜎 + 𝑂
(

𝜖2
)

, 𝗒 = 𝜖𝑌 (𝜎, 𝑡) + 𝑂
(

𝜖2
)

, 𝜃 = 𝜖𝛩 (𝜎, 𝑡) + 𝑂
(

𝜖2
)

, (74)

for 𝜖 ≪ 1. Plugging (74) into (72) we obtain 
𝜕𝗑̃
𝜕𝑇

(𝜎, 0, 𝑡) = 𝑂
(

𝜖2
)

, (75a)

𝜕𝗒̃
𝜕𝑇

(𝜎, 0, 𝑡) − 𝜖
(

𝑌̇ + 𝜎𝑐(𝑡) 𝜕
2𝑌
𝜕𝜎2

(0, 𝑡) − 𝑐(𝑡) 𝜕𝑌
𝜕𝜎

)

= 𝑂
(

𝜖2
)

. (75b)
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For the next step, it is important to note that since we have 𝜕𝗒∕𝜕𝜎 = sin 𝜃 and 𝑦̃ (𝜎, 0, 𝑡) = 𝑦 (𝜎, 𝑡), it follows that 𝜕𝗒̃∕𝜕𝜎 (𝜎, 0, 𝑡) = 𝜕𝗒∕𝜕𝜎
and therefore 

𝜃 (𝜎, 0, 𝑡) = 𝜃 (𝜎, 𝑡) . (76)

We can now obtain an expression for 𝜕𝗒̃∕𝜕𝑇 (𝜎, 0, 𝑡) to first order in 𝜖. Positing 
𝜃 (𝜎, 0, 𝑡) = 𝜃 (𝜎, 𝑡) = 𝜖𝛩 (𝜎, 𝑡) + 𝑂

(

𝜖2
)

. (77)

with 𝛩 a function of order unit, using (61a) and (61c), and differentiating w.r.t. 𝜎, we obtain 

𝜖 𝜕3𝛩
𝜕𝜎3

+
𝜕𝗇̃𝑦
𝜕𝜎

− 𝗇̃𝑥
𝜕2𝗒̃
𝜕𝜎2

(𝜎, 0; 𝑡) = 𝑂
(

𝜖2
)

, (78)

which is equivalent to the beam equation 

𝜖 𝜕4𝑌
𝜕𝜎4

+ 𝜁
𝜕𝗒̃
𝜕𝑇

− 𝜖𝗇̃𝑥
𝜕2𝑌
𝜕𝜎2

= 𝑂
(

𝜖2
)

. (79)

Thus, 
𝜕𝗒̃
𝜕𝑇

(𝜎, 0; 𝑡) = 𝜖
𝜁

(

𝗇̃𝑥
𝜕2𝑌
𝜕𝜎2

−  𝜕
4𝑌
𝜕𝜎4

)

+ 𝑂(𝜖2). (80)

To leading order we thus have 
𝜕𝑌
𝜕𝑡

− 𝑐(𝑡) 𝜕𝑌
𝜕𝜎

= 1
𝜁

(

𝑭 (𝑡) · 𝝉̂ 𝜕
2𝑌
𝜕𝜎2

−  𝜕
4𝑌
𝜕𝜎4

)

− 𝜎𝑐(𝑡) 𝜕
2𝑌
𝜕𝜎2

(0, 𝑡) . (81)

We obtain the first three boundary conditions for 𝑌  by evaluating (62b) and (62c) at 𝑇 = 0, to first order in 𝜖, giving 

𝑌 (0, 𝑡) = 0, 𝜕𝑌
𝜕𝜎

(0, 𝑡) = 0, 𝜕2𝑌
𝜕𝜎2

(𝐿, 𝑡) = 0. (82)

The fourth boundary condition for 𝑌  is obtained similarly, by evaluating (61a) at 𝜎 = 𝐿 and 𝑇 = 0, to 𝑂(𝜖), 

 𝜕
3𝑌
𝜕𝜎3

(𝐿, 𝑡) − 𝑭 · 𝝉̂ 𝜕𝑌
𝜕𝜎

(𝐿, 𝑡) = −𝑁𝑦. (83)

Eq. (81) along with boundary conditions (82), (83) constitute the linearised system for 𝑌  under small deflections. Multiplying each 
of these equations by 𝜖, we obtain the linearised equation for 𝗒, to first order in 𝜖. The full system is then 

𝜕𝒓̂
𝜕𝑡

= 𝑐(𝑡)𝝉̂ , (84a)

𝜕𝜃̂
𝜕𝑡

= 𝑐(𝑡)
𝜕2𝗒
𝜕𝜎2

(0, 𝑡) , (84b)

𝜕𝗒
𝜕𝑡

− 𝑐(𝑡)
𝜕𝗒
𝜕𝜎

= 1
𝜁

(

𝑭 (𝑡) · 𝝉̂
𝜕2𝗒
𝜕𝜎2

− 
𝜕4𝗒
𝜕𝜎4

)

− 𝜎𝑐(𝑡)
𝜕2𝗒
𝜕𝜎2

(0, 𝑡) , (84c)

𝗒 (0, 𝑡) = 0,
𝜕𝗒
𝜕𝜎

(0, 𝑡) = 0,
𝜕2𝗒
𝜕𝜎2

(𝐿, 𝑡) = 0, (84d)


𝜕3𝗒
𝜕𝜎3

(𝐿, 𝑡) − 𝑭 · 𝝉̂
𝜕𝗒
𝜕𝜎

(𝐿, 𝑡) = −𝑭 · 𝝂̂. (84e)

These equations make up the system (47) used in the main text.

Appendix B. Numerics and implementation details

To solve the system for (𝒓̂, 𝜃̂, 𝗒) we spatially discretise (47a) using a spectral method. This approach approximates the derivatives 
of a given function by the derivatives of a Chebyshev polynomial interpolation of that function on a discrete grid (Trefethen, 2000; 
Press et al., 2007). To that end, we first transform the spatial domain to the interval [−1, 1]. We start by rewriting (47a) in terms 
of the dimensionless variable 

𝑋 = 2𝜎∕𝐿 − 1 ∈ [−1, 1] . (85)

This allows us to discretise the spatial domain according to the Chebyshev grid (Trefethen, 2000) 
𝑋𝑗 = cos (𝑗𝜋∕𝑁) , 𝑗 = 0,… , 𝑁. (86)

Thus, we can convert the PDE (47a) into a system of ordinary differential equations. First, we define 
𝗒𝑗 (𝑡) = 𝗒

(

𝑋𝑗 , 𝑡
)

, (87)

and the vector 
y =

(

𝗒 ,… , 𝗒
)

. (88)
0 𝑁
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The spatial derivatives of 𝗒(𝑋, 𝑡) evaluated on the Chebyshev grid may be approximated by multiplying y with the Chebyshev 
differentiation matrix 𝐷𝑁  (Trefethen, 2000). e.g. 

𝜕𝑘𝗒
𝜕𝑋𝑘

(

𝑋𝑗 , 𝑡
)

≈
[

𝐷𝑘
𝑁y

]

𝑗 . (89)

By replacing instances of the spatial derivatives of 𝗒(𝑋, 𝑡) with the above approximation in the rescaled equation, we obtain an 
ordinary differential equation for y (𝑡) of the form 

dy
d𝑡

= 𝑔
(

𝑡, 𝜃̂, 𝒓̂,y
)

. (90)

Once instances of spatial derivatives have been replaced according to (89), the boundary conditions constitute conditions that y
must satisfy. Solving these equations for 𝗒0, 𝗒1, 𝗒𝑁−1, 𝗒𝑁  in terms of 𝗒2,… , 𝗒𝑁−2 ensures that y satisfies these conditions.

Using the boundary conditions we can constrain 𝗒0, 𝗒1, 𝗒𝑁−1 and 𝗒𝑁 . The first three boundary conditions, 

𝗒(0, 𝑡) = 0,
𝜕𝗒
𝜕𝜎

(0, 𝑡) = 0,
𝜕2𝗒
𝜕𝜎2

(𝐿, 𝑡) = 0. (91)

are linear, which allows to express directly 𝗒1, 𝗒𝑁−1, 𝗒𝑁  in terms of 𝗒0, 𝗒2, and 𝗒𝑁−2. 


𝜕3𝗒
𝜕𝜎3

(𝐿, 𝑡) − 𝑭 · 𝝉̂
𝜕𝗒
𝜕𝜎

(𝐿, 𝑡) = −𝑭 · 𝝂̂, (92)

can be discretised as 
 (2∕𝐿)3

[

𝐷3
𝑁y

]

0 − (2∕𝐿)𝑭 · 𝝉̂
[

𝐷𝑁y
]

0 = −𝑭 · 𝝂̂; (93)

noting that 𝜕𝑘𝗒∕𝜕𝑋𝑘 = (𝐿∕2)𝑘 𝜕𝑘𝗒∕𝜕𝜎𝑘 (85). Here, 𝑭  depends on the position of the tip, thus (93) is a nonlinear equation for 𝗒0 for 
which no closed-form solution can be found in general. In principle, one can solve this nonlinear equation numerically for 𝗒0 using 
a root-finding procedure at each time step. Alternatively, we may simplify the problem by evaluating the tangent at the tip at the 
neighbouring point 𝑋 = 𝑋2 (instead of 𝑋1), i.e., 

𝒕 =
𝜕𝒓∕𝜕𝜎(𝐿, 𝑡)

‖𝜕𝒓∕𝜕𝜎(𝐿, 𝑡)‖
≈

(

1 +
(

2
𝐿

𝗒2 − 𝗒3
𝑋2 −𝑋3

)2
)−1∕2

(

𝝉̂ + 2
𝐿

𝗒2 − 𝗒3
𝑋2 −𝑋3

𝝂̂
)

, (94)

so as to eliminate the explicit dependence upon 𝗒0. The error produced by the approximation (94) for the tangent is 𝑂
(

1∕𝑁2) as 
𝑁 → ∞. This converts the above equation to a linear one, which allows us to obtain a closed-form expression for 𝗒0 in terms of 
𝗒2,… , 𝗒𝑁−2.

Thus, (47a) can be approximated by an equation of the form 
dY
d𝑡

= 𝐺
(

𝑡, 𝜃̂, 𝒓̂,Y
)

, (95)

where Y ∶=
(

𝗒2,… , 𝗒𝑁−2
) denotes the vector of discrete variables after truncation of the boundary values 𝗒0, 𝗒1, 𝗒𝖭 and 𝗒𝖭−1 (which 

are now fixed); and 𝐺(𝑡, 𝜃̂, 𝒓̂,Y) ∶= 𝑔(𝑡, 𝜃̂, 𝒓̂,y(Y)). Finally, (47b) can be re-written as 
d𝜃̂
d𝑡

= (2∕𝐿)2 𝑐(𝑡)
[

𝐷2
𝑁y

]

𝑁 , (96)

and (47c) remains unchanged. The equations 
dY
d𝑡

= 𝐺
(

𝑡, 𝜃̂, 𝒓̂,Y
)

, (97a)

d𝜃̂
d𝑡

= (2∕𝐿)2 𝑐(𝑡)
[

𝐷2
𝑁y

]

𝑁 , (97b)

d𝒓̂
d𝑡

= 𝑐(𝑡) 𝝉̂ , (97c)

form a simple IVP which which can be integrated numerically (here we used the built-in function NDSolve implemented in
Mathematica 13.3).

Data availability

No data was used for the research described in the article.
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