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Summary

The plantmicrobiota research field has rapidly shifted from efforts aimed at gaining a descriptive

understanding of microbiota composition to a focus on acquiring mechanistic insights into

microbiota functions and assembly rules. This evolution was driven by our ability to establish

comprehensive collections of plant-associatedmicrobes and to reconstructmeaningfulmicrobial

synthetic communities (SynComs). We argue that this powerful deconstruction–reconstruction
strategy can be used to reconstitute increasingly complex synthetic ecosystems (SynEcos) and

mechanistically understand high-level biological organization. The transitioning from simple to

more advanced, fully tractable and programmable gnotobiotic SynEcos is ongoing and aims at

rationally simplifying natural ecosystems by engineering them. Such reconstitution ecology

approaches represent an untapped strategy for bridging the gap between ecology and

functional biology and for unraveling plant–microbiota–environment mechanisms that

modulate ecosystem health, assembly, and functioning.

I. Introduction

Roots and leaves of healthy plants are colonized by a staggering
diversity of microbes that evolved in different kingdoms of life (Bai
et al., 2015; Berg & Koskella, 2018; Dur�an et al., 2018; Hassani
et al., 2018) and are primarily acquired horizontally from the
surrounding environment (Vorholt, 2012; Bulgarelli et al., 2013;

Simonin et al., 2022). A substantial fraction of these microbes is
reproducibly detected in plant tissues across time and space or show
high heritability, suggesting that plants and (at least some of) its
microbiota members have engaged in stable associations (Hac-
quard et al., 2015; Yeoh et al., 2017; Thiergart et al., 2020;
Chesneau et al., 2022; Dur�an et al., 2022b; He et al., 2024). The
microbiota provides key functions to the host that promote
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pathogen resistance, nutrient acquisition, or abiotic stress tolerance
(Vandenkoornhuyse et al., 2015; Fitzpatrick et al., 2020; Trivedi
et al., 2020). Obtaining a deeper mechanistic understanding of
microbiota assembly rules and beneficial functions is currently an
active research line in the plant microbiota research field. A major
breakthrough was that a substantial fraction of these
plant-associated microbes is culturable (i.e. > 50% at ASV
level-resolution (Bai et al., 2015; Armanhi et al., 2018; Wippel
et al., 2021; Zhang et al., 2021)), opening the way to assemble and
reconstitute synthetic microbial communities (SynComs) that are
representative of naturally occurring plant microbiomes (Dur�an
et al., 2018; Zhou et al., 2022).

SynCom reductionist experiments in simple gnotobiotic systems
have been critical for establishing causality (Vorholt et al., 2017)
and particularly for validating the importance of keystone species,
priority effects, and organ-to-organ microbial transmission during
plant microbiota establishment (Bai et al., 2015; Agler et al., 2016;
Carlstr€om et al., 2019; Arnault et al., 2024). They have also been
used to validate the relevance of microbial primary and specialized
metabolites for shaping microbiota composition (Helfrich
et al., 2018; Getzke et al., 2023, 2024; Sch€afer et al., 2023), to
identify microbial strains/genes/molecules that modulate host
development (Garrido-Oter et al., 2018; Finkel et al., 2020; Gonin
et al., 2023), immune responses (Ma et al., 2021; Teixeira
et al., 2021), nutrient acquisition (Harbort et al., 2020;
Zhang et al., 2022), resistance to biotic and abiotic stresses
(Castrillo et al., 2017; Dur�an et al., 2018; Vogel et al., 2021;
Wolinska et al., 2021;Hou et al., 2021a; Emmenegger et al., 2023),
or host colonization (Vannier et al., 2023). This strategy was also
instrumental for characterizing host genes that prevent microbial
dysbiosis (Chen et al., 2020; Pfeilmeier et al., 2021; Entila
et al., 2024; Su et al., 2024) or selectively shape composition and
function of plant-associated microbes (Zhang et al., 2019; Loo
et al., 2024).

Nowadays, it is becoming realistic to apply this powerful
reconstruction approach at ecosystem-level resolution to better
understand the reciprocal interplay between the host and the
microbiota with its environment as well as the cascading
consequences on ecosystem health and functioning. This evolution
is also critical to place microbial assembly processes and beneficial
functions in an eco-evolutionary framework (Bergelson
et al., 2021). Here, we discuss current approaches and future
roadmaps for the reconstruction of plant SynEcos, define SynEco’s
prospects, advantages, and constraints, and provide a conceptual
framework to leverage the power of reconstitution ecology to
address ecological questions.

II. SynEco as a tool for reconstitution ecology

SynEcos are artificially designed and constructed ecological systems
that aim at replicating the functions of natural ecosystems in a
controlled environment (Fig. 1). There are already multiple existing
SynEcos; however, they vary significantly in terms of their
complexity. For instance, a Petri dish with a defined growth
medium, a plant, and a bacterial strain incubated in a
growth chamber represents the simplest plant SynEco. By contrast,

a fully tractable soil-based plant system inoculated with a multi-
kingdom synthetic community in a fully programmable gnotobiotic
growth chamber represents evolution toward more advanced and
complex SynEcos, referred to here as next-generation SynEcos. In
our view, a SynEco ought to combine (1) an environmental/climatic
sphere, (2) a nutritional/chemical sphere, and (3) an organismal
sphere that allows for inter- and intraspecific interactions.The coreof
next-generation SynEco lies in the concept we term here
‘reconstitution ecology’, which seeks to recapitulate ecosystem
complexity while following strict reductionist principles. To achieve
this, next-generation SynEcos must focus on the rational design of
ecosystems, balancing ecological complexity with system control
(Tecon et al., 2019) in order to bridge the gap between laboratory
observations and natural ecosystem processes (Fig. 1).

We anticipate that next-generation SynEcos and associated
reconstitution ecology principles will represent an important
research line in the near future to recapitulatemeaningful ecological
events outside their natural contexts, tomechanistically understand
ecosystem assembly, and tomake use of reductionist approaches for
addressing key ecological questions. With reconstitution ecology,
we seek to define a potentially novel and exciting research strategy
for researchers that aim at linking functional biology and ecology
and to subject ecological hypotheses to experimental testing with a
high turnover. Next-generation SynEcos will be key to bridging
holistic-reductionist divides in ecology-based research fields
(Tecon et al., 2019) and might serve as potential missing links to
cross the divide between controllability and complexity (Fig. 1).

III. From SynComs to SynEcos

Similar to SynCom reductionist strategies (Vorholt et al., 2017),
SynEco reconstitution encompasses the disassembly and rational
re-assembly of diverse ecosystem components consisting of both
biotic (plant, micro-/macrobiomes) and abiotic (climatic and
edaphic factors) variables (Fig. 1). Reconstitution ecology using
next-generation SynEcos will rely on deep descriptive knowledge of
soil physical and chemical composition, organismal diversity and
composition in various plant organs, and temporal dynamics of
climatic conditions of a given ecosystem.This descriptive, temporal
understanding of ecosystem behavior is a key prerequisite for
informing the design and reconstruction of simpler yet representa-
tive and meaningful synthetic versions that are tractable and
gnotobiotic (Fig. 1). Building next-generation SynEcos requires
resources such as microbial culture collections and genomic
information for the organisms involved, as well as engineering
technologies to mimic ecosystem parameters, monitor them, and
assess phenotypic traits.

SynCom reconstitution experiments with germ-free plants have
been extensively reported in relatively simple SynEcos (Agar
systems, perlite, sand, and FlowPots) (Gao et al., 2018; Kremer
et al., 2021; Ma et al., 2022) and in some cases include abiotic
stresses (light, salt, drought, and nutrient) that are used as
environmental perturbations (Finkel et al., 2019; Hou
et al., 2021a; Getzke et al., 2024; Novak et al., 2024). Recently,
the development of a multitude of more advanced plant SynEcos
that aimed at better integrating plant–microbiota interactions in a
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precise environmental context have emerged. This includes the
development of (1) gnotobiotic systems thatmonitor themetabolic
interplay between plant, microbes, and their environment
(EcoFabs) (Zengler et al., 2019; Finkbeiner et al., 2021; Novak
et al., 2024), (2) climatic chambers mimicking seasonal changes in
temperature, day length, and light intensity of a given site (Dur�an
et al., 2022a), (3) low-cost, programmable, and miniaturized
growth chambers that can continuously measure ecosystem
functions at the soil–plant–microbiome-atmosphere continuum
(Padmanabha & Streif, 2019; Salvatori et al., 2021), and (4)
sophisticated and more expensive ecotron-like chambers (iDiv
ecotron, EcoPOD) (Schmidt et al., 2021; Yee et al., 2021). Today,
we are in a transitory phase in which various SynEco approaches
emerge and provide valuable insight into ecosystem functioning. As
we continue to explore these innovative methods, reducing the cost
of these advanced systems will be key to elevating the relevance of
next-generation SynEcos and revolutionizing the way we can
modulate, reconstitute, and understand high-level biological
organization with unprecedented speed.

IV. The value of SynEcos

SynEcos do not only enable research at various ecological scales
ranging from chemical processes to complex multikingdom
communities but also allow controlled manipulation of environ-
mental variables (Fig. 2). Nowadays, holistic ecosystem-level

research is primarily conducted in natural environments. Despite
important breakthroughs, this remains a challenging task due to the
inherent stochasticity of ecosystems behavior and the difficulty to
precisely control their biotic and abiotic components.

In SynEcos, targeted experiments can be conducted in the
absence of confounding factors,which enables precise assessment of
causal relationships and associated mechanisms. SynEcos enhance
reproducibility by maintaining consistent environmental settings
over time. Furthermore, it also facilitates experimentation turnover
by allowing continuous studies throughout the year and/or by
running multiple SynEco setups in parallel, each addressing a
different ecological question. An inherent feature of a SynEco is the
ability to monitor ecosystem variables in real time and, therefore,
provides researchers with invaluable insights into dynamic
ecosystem processes. This can be facilitated by the implementation
of advanced sensors (gas, temperature, humidity, …) as well as
cameras and tools that enable nondestructive and continuous
observation of ecosystem traits, which leads to a comprehensive
understanding of plant–microbe-environment dynamics over time
(Buckley et al., 2020; Ang & Lew, 2022; Chen et al., 2023; Kolhar
& Jagtap, 2023).

In next-generation SynEcos, various perturbations will have to
be applied either individually or in combination in order to explore
a wide range of research questions (Fig. 2a). Similar to SynComs,
which allow for modularity within microbial composition and
abundance, SynEco reconstitution extends this flexibility to key

Fig. 1 Synthetic plant ecosystems to bridge the gap between ecology and functional biology. Framework illustrating the transition from natural plant
ecosystems to synthetic plant systems (SynEco). This encompasses description, deconstruction, and reconstruction of climatic conditions, organismal
diversity in plant shoot and roots, and soil physical and chemical properties of a given natural ecosystem. Recapitulating natural ecosystem conditions with
next-generation SynEcos will allow causal understanding of ecosystem processes and will inform prediction of natural ecosystem behavior. C, carbon; Fe;
iron; K, potassium; N, nitrogen; P, phosphorus.
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edaphic and climatic factors (e.g. CO2, light, temperature, water,
pH, and nutrients) and chemical conditions (e.g. amendments,
pesticides, and fertilizers), which gives researchers full control over
ecosystem heterogeneity. Importantly, SynEcos permit the use of
treatments whose application is typically restricted in natural
environments (Fig. 2a). These include, for example, chemicals such
as heavy metals, fungicides, pesticides, and hormones. SynEcos
benefit from a lack of limitations on concentration or frequency of
application and no accompanying negative environmental impli-
cations. This also includes invasion experiments with pests,
pathogens, or exotic plants. Another distinct advantage lies in the
utilization of genetic perturbations such as the use of genetically
modified organisms. Indeed, SynEcos afford researchers the
freedom to introduce engineered organisms (including plants,
microbes, and insects) customized to specific research objectives
and to test the broad effect of mutations at ecosystem-level
resolution (Barbour et al., 2022). This capability opens up avenues
for generating mechanistic understanding of natural ecosystems
and the exploration of novel interactions within them that are,
otherwise, difficult to uncover. With SynEco, it is also possible to

remove or deplete specific biotic variables (dropout experiments)
that can range from entire communities to individuals and genes as
well as abiotic variables encompassing, for instance, specific soil
nutrients, water content, or light spectra (Fig. 2).

SynEcos allows researchers to generate large amounts of data that
can be used in predictive models to forecast plant behavior under
various conditions or to predict ecosystem response to perturba-
tions or global change stressors. These data allow for preventive
management of agricultural crops. Reductionist synthetic ecosys-
tems will, however, never fully recapitulate the complexity of
natural environments and, therefore, confirming observations in
natural settings remains imperative to ensure the robustness and
broader applicability of research findings derived from SynEcos.

V. Unlocking new ecological questions using
next-generation SynEcos

Next-generation SynEcos and reconstitution ecology offer a range
of opportunities to test research hypotheses and ecological concepts
that remain difficult to tackle in natural settings.

Fig. 2 Next-generation synthetic ecosystems (SynEcos) as modular and controllable platforms to study causality in plant–microbe-environment
interactions. (a) Representation of possible variable grouped into biological, chemical, and climatic categories that can be reconstituted in SynEco. These
variables/perturbations can be applied (+, drop in), removed (�, drop out) or gradually adjusted (>, gradient), either individually or together. Objects
highlighted in green represent perturbations difficult to apply in natural ecosystems (added value of SynEco). Several environmental and biological outputs
can be monitored to assess ecosystem characteristics and dynamics. (b) Modular compartmentalization within and between SynEco(s), opening new
avenues to study ecosystem functioning. C, carbon; K, potassium; N, nitrogen; P, phosphorus.

� 2024 The Author(s).

New Phytologist� 2024 New Phytologist Foundation.

New Phytologist (2025) 245: 496–502
www.newphytologist.com

New
Phytologist Tansley insight Review 499

 14698137, 2025, 2, D
ow

nloaded from
 https://nph.onlinelibrary.w

iley.com
/doi/10.1111/nph.20250 by M

PI 328 Plant B
reeding R

esearch, W
iley O

nline L
ibrary on [10/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Assessing the impact of global change on plant ecosystem
behavior is a topic of great interest. Although the effects of different
climate conditions such as elevated atmospheric CO2 or
temperatures on plants or on soil microbial communities have
been extensively studied in natural ecosystems (Ben Keane
et al., 2023), it remains difficult to resolve complex feedback loops
that govern abiotic–biotic connections along the climate–plant–
microbe–soil axis. Indeed, plant microbiota composition and
activity likely heavily influence plant processes such as respiration
and photosynthesis and, in turn, photosynthesis perturbations
caused by environmental change will heavily impact soil microbial
communities via changes in root exudates. SynEcos provide
opportunities to study these complex feedback loops connecting
host C-fixation/sequestration with plant microbiota functions and
soil respiration. Considering the plant, the microbiota, and the
climate as a dynamic signaling network, in which all constituent
parts can be individually manipulated will bring invaluable
knowledge informing climate models and projections.

In relation to the abovementioned climate–plant–microbe–soil
axis, it is also important to consider plant roots and shoots as
separated yet interconnected organs that integrate different signals
belowground and aboveground, respectively. These organs interact
with their own respective microbial community and environment
and extensively influence each other through long-distance-signaling
pathways within the plant. SynEco approaches that focus on proper
separation of root and shoot systems represent a unique opportunity
to better understand root–shoot–environment connectivity and,
particularly, how perception of biotic and abiotic cues by roots and
shoot translates into long-distance transfer of information that shape
structure, function, and evolution of plant–microbe interactions
(Hou et al., 2021b). Through step-by-step reconstitution and
manipulation of microbial community members and environmental
parameters it will become possible to investigate the intricate link
connecting root-microbe-soil and shoot-microbe-climate modules
(Fig. 2b). This will be important to understand how they influence
each other and how they evolved in response to each other.

Because SynEco-based reconstitution ecology will encompass
strategies to compartmentalize ecosystems (i.e. by physically
separating biotic components whilst allowing metabolic exchanges
between them), it will open novel opportunities to studymetabolic
fluxes between organisms and communities that are connected
(Fig. 2b). Understanding metabolic fluxes between constituent
parts of an ecosystem is key to understanding the reciprocal
interplay between host andmicrobialmetabolites and the influence
of the environment in driving high-level biological organization
through production of key exometabolites. An exciting possibility
of compartmentalized SynEcos is, for example, the prospect of
performing experimental evolution experiments of
plant-associated microbes in response to host exudates or upon
metabolic perturbations.

Reconstitution ecology also opens the exciting opportunity to
connect multiple SynEcos in series to understand ecosystem–
ecosystem interplays and dynamics (Fig. 2b). Findings here could
inform the design of more efficient systems that are built based on
circular economy principles in order to minimize waste and
maximize production between ecosystems. This particularly

applies not only to the one health concept, food webs, but also to
future food production systems that will be designed based on
closed energy and efficient material flow principles.

Finally, the simplification of ecosystems will make it possible to
identify aminimal set of components that are necessary and sufficient
to modulate ecosystem functioning and to define whether emergent
property and simplicity drive higher order biological assemblyor core
properties of certain ecosystems. Similarly, it can lead to identifica-
tion of key perturbations and conditions driving ecosystemdysbiosis.
This can guide future experimentation and standardization of
experimental settings across institutions and disciplines.

VI. Conclusions

Although development of next-generation SynEcos will remain a
challenging task, a better approximation of soil–plant–microbe-
climate interactions is urgently needed to gain mechanistic and
predictive insights into how complex ecosystems react and adjust in
response to perturbations. Reconstitution ecology will be instru-
mental for the establishment of causal relationships to observed
phenomena by providing a means to functionally validate
mechanisms. Tractable ecosystem parameters together with
gnotobiotic system compartmentalization will help to elucidate
the roles of both individual microbial community members and
SynComs together with plant growth conditions and an array of
environmental conditions that shape these communities and
interactions. SynEco approaches can be extended to many other
research fields and disciplines. We predict that model
next-generation SynEco systems could be shared across labora-
tories, similar to model strains or plants. We envision that
ecological data will be standardized, recorded, and deposited in
public repositories alongside phenotypes and sequencing data to
increase reproducibility of experiments and to harness the power of
the microbiota under ever changing environmental conditions.
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